Dependence Analysis

Motivating question

- Can the loops on the right be run in parallel?
 - i.e., can different processors run different iterations in parallel?
- What needs to be true for a loop to be parallelizable?
 - Iterations cannot interfere with each other
 - No dependence between iterations

```
for (i = 1; i < N; i++) {
  a[i] = b[i];
  c[i] = a[i - 1];
}
```

```
for (i = 1; i < N; i++) {
  a[i] = b[i];
  c[i] = a[i] + b[i - 1];
}
```

Running a loop in parallel

- If there is a dependence in a loop, we cannot guarantee that the loop will run correctly in parallel
- What if the iterations run out of order?
 - Might read from a location before the correct value was written to it
- What if the iterations do not run in lock-step?
 - Same problem!

Other kinds of dependence

- Anti dependence – When an iteration reads a location that a later iteration writes (why is this a problem?)
  ```
  for (i = 1; i < N; i++) {
    a[i] = b[i];
    c[i] = a[i];
  }
  ```

- Output dependence – When an iteration writes a location that a later iteration writes (why is this a problem?)
  ```
  for (i = 1; i < N; i++) {
    a[i] = b[i];
    c[i + 1] = c[i];
  }
  ```

Data dependence concepts

- Dependence source is the earlier statement (the statement at the tail of the dependence arrow)
- Dependence sink is the later statement (the statement at the head of the dependence arrow)

```
i = 1  i = 2  i = 3  i = 4  i = 5
```

- Dependences can only go forward in time: always from an earlier iteration to a later iteration.
Using dependences
- If there are no dependences, we can parallelize a loop
- None of the iterations interfere with each other
- Can also use dependence information to drive other optimizations
 - Loop interchange
 - Loop fusion
 - (We will discuss these later)
- Two questions:
 - How do we represent dependences in loops?
 - How do we determine if there are dependences?

Representing dependences
- Focus on flow dependences for now
- Dependences in straight line code are easy to represent:
 - One statement writes a location (variable, array location, etc.) and another reads that same location
 - Can figure this out using reaching definitions
- What do we do about loops?
 - We often care about dependences between the same statement in different iterations of the loop!

```plaintext
for (i = 1; i < N; i++) {
    a[i + 1] = a[i] + 2
}
```

Iteration space graphs
- Represent each dynamic instance of a loop as a point in a graph
- Draw arrows from one point to another to represent dependences
  ```plaintext
  for (i = 0; i < N; i++) {
      a[i + 2] = a[i]
  }
  ```
- Step 1: Create nodes, 1 for each iteration
 - Note: not 1 for each array location!
- Step 2: Determine which array elements are read and written in each iteration
- Step 3: Draw arrows to represent dependences

```plaintext
```
2-D iteration space graphs

• Can do the same thing for doubly-nested loops
• 2 loop counters

\[
\begin{align*}
&\text{for } (i = 0; i < N; i++) \\
&\text{for } (j = 0; j < N; j++) \\
&a[i+1][j-2] = a[i][j] + 1
\end{align*}
\]

Iteration space graphs

• Can also represent output and anti dependences
• Use different kinds of arrows for clarity. E.g.
 - \(\rightarrow\) for output
 - \(\rightarrow\) for anti

• Crucial problem: Iteration space graphs are potentially infinite representations!
• Can we represent dependences in a more compact way?

Distance and direction vectors

• Compiler researchers have devised compressed representations of dependences
• Capture the same dependences as an iteration space graph
• May lose precision (show more dependences than the loop actually has)
• Two types
 • Distance vectors: captures the “shape” of dependences, but not the particular source and sink
 • Direction vectors: captures the “direction” of dependences, but not the particular shape

Distance vector

• Represent each dependence arrow in an iteration space graph as a vector
• Captures the “shape” of the dependence, but loses where the dependence originates

Distance vector for this iteration space: (2)
• Each dependence is 2 iterations forward

2-D distance vectors

• Distance vector for this graph:
 - \((1,-2)\)
 - +1 in the i direction, -2 in the j direction
• Crucial point about distance vectors: they are always “positive”
• First non-zero entry has to be positive
• Dependences can’t go backwards in time

More complex example

• Can have multiple distance vectors

\[
\begin{align*}
&\text{for } (i = 0; i < N; i++) \\
&\text{for } (j = 0; j < N; j++) \\
&a[i+1][j-2] = a[i][j] + a[i-1][j-2]
\end{align*}
\]
More complex example

- Can have multiple distance vectors

```
for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
a[i+1][j-2] = a[i][j] + a[i-1][j-2]
```

- Distance vectors
 - (1, -2)
 - (2, 0)
- Important point: order of vectors depends on order of loops, not use in arrays

Problems with distance vectors

- The preceding examples show how distance vectors can summarize all the dependences in a loop nest using just a small number of distance vectors
- Can't always summarize as easily
- Running example:

```
for (i = 0; i < N; i++)
a[2*i] = a[i];
```

Loss of precision

- What are the distance vectors for this code?
 - (1), (2), (3), (4) ...
- Note: we have information about the length of each vector, but not about the source of each vector
- What happens if we try to reconstruct the iteration space graph?

Direction vectors

- The whole point of distance vectors is that we want to be able to succinctly capture the dependences in a loop nest
- But in the previous example, not only did we add a lot of extra information, we still had an infinite number of distance vectors
- Idea: summarize distance vectors, and save only the direction the dependence was in
 - (2, -1) → (+, –)
 - (0, 1) → (0, +)
 - (0, -2) → (0, –)
 - (can't happen; dependences have to be positive)
- Notation: sometimes use '<' and '>' instead of '+' and '-'
Loop parallelization

Loop-carried dependence

- The key concept for parallelization is the loop carried dependence
- A dependence that crosses loop iterations
- If there is a loop carried dependence, then that loop cannot be parallelized
- Some iterations of the loop depend on other iterations of the same loop

Examples

```c
for (i = 0; i < N; i++)
a[2*i] = a[i];
```

Later iterations of the i loop depend on earlier iterations

```c
for (i = 0; i < N; i++)
    for (j = 0; j < N; j++)
a[i+1][j-2] = a[i][j] + 1
```

Later iterations of both i and j loops depend on earlier iterations

Some subtleties

- Dependencies might only be carried over one loop!

```c
for (i = 0; i < N; i++)
    for (j = 0; j < N; j++)
a[i][j+1] = a[i][j] + 1
```

- Can parallelize i loop, but not j loop

Direction vectors

- So how do direction vectors help?
 - If there is a non-zero entry for a loop dimension, that means that there is a loop carried dependence over that dimension
 - If an entry is zero, then that loop can be parallelized!
 - May be able to parallelize inner loop even if entry is not zero, but you have to carefully structure parallel execution
Data Dependence Tests

Problem formulation

- Given the loop nest:

  ```
  for (i = 0; i < N; i++)
  a[f(i)] = ...
  ...
  = a[g(i)]
  ```

 A dependence exists if there exist an integer i and an i' such that:

 - f(i) = g(i')
 - 0 ≤ i, i' < N

 If i < i', write happens before read (flow dependence)

 If i > i', write happens after read (anti dependence)

Loop normalization

- Loops that skip iterations can always be normalized to loops that don't, so we only need to consider loops that have unit strides.

 Note: this is essentially the reverse of linear test replacement

  ```
  for (i = L; i < U; i += S)
  ...
  a[i] ...
  ```

  ```
  for (i = 0; i < (U - L)/S; i += 1)
  ...
  a[S*i + L] ...
  ```

Diophantine equations

- An equation whose coefficients and solutions are all integers is called a Diophantine equation.

 Our question:

 - f(i) = a*i + b
 - g(i) = c*i + d

 Does f(i) = g(i') have a solution?

 - f(i) = g(i') ⇒ ai + b = ci' + d ⇒ ai + a2i' = a

Solutions to Diophantine eqns

- An equation a_1i + a_2j = a_3 has a solution iff gcd(a_1, a_2) evenly divides a_3.

 Examples

 - 15i + 6j - 9k = 12 has a solution (gcd = 3)
 - 2i + 7j = 3 has a solution (gcd = 1)
 - 9i + 6j = 10 has no solution (gcd = 3)

Why does this work?

- Suppose g is the gcd(a, b) in a^i + b^j = c.

 Can rewrite equation as

 g^x(a^i + b^j) = c

 a^x i + b^x j = c/g

 a' and b' are integers, and relatively prime (gcd = 1) so by choosing i and j correctly, can produce any integer, but only integers

 Equation has a solution provided c/g is an integer.
Finding the GCD

- Finding GCD with Euclid's algorithm
- Repeat
 - $a = a \mod b$
 - swap a and b
 - until b is 0 (resulting a is the gcd)
- Why? If g divides a and b, then g divides $a \mod b$

Finding GCD with Euclid's algorithm

- Repeat
 - $a = a \mod b$
 - swap a and b
 - until b is 0 (resulting a is the gcd)

Example

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>$a \mod b$</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>15</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Finding GCD with Euclid's algorithm

- Repeat
 - $a = a \mod b$
 - swap a and b
 - until b is 0 (resulting a is the gcd)

Example

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>$a \mod b$</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>15</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Downsides to GCD test

- If $f(i) = g(i')$ fails the GCD test, then there is no i, i' that can produce a dependence → loop has no dependences
- If $f(i) = g(i')$, there might be a dependence, but might not
 - i and i' that satisfy equation might fall outside bounds
 - Loop may be parallelizable, but cannot tell
- Unfortunately, most loops have $\gcd(a, b) = 1$, which divides everything
- Other optimizations (loop interchange) can tolerate dependences in certain situations

Other dependence tests

- GCD test: doesn't account for loop bounds, does not provide useful information in many cases
- Banerjee test (Utpal Banerjee): accurate test, takes directions and loop bounds into account
- Omega test (William Pugh): even more accurate test, precise but can be very slow
- Range test (Blume and Eigenmann): works for non-linear subscripts
- Compilers tend to perform simple tests and only perform more complex tests if they cannot prove non-existence of dependence

Other loop optimizations

Loop interchange

- We've seen this one before
- Interchange doubly-nested loop to
 - Improve locality
 - Improve parallelism
 - Move parallel loop to outer loop (coarse grained parallelism)

Loop interchange legality

- We noted that loop interchange is not always legal, because it reorders a computation
- Can we use dependences to determine legality?
Loop interchange dependences

- Consider interchanging the following loop, with the dependence graph to the right:

  ```
  for (i = 0; i < N; i++)
  for (j = 0; j < N; j++)
  a[i+1][j+2] = a[i][j] + 1
  ```

 - Distance vector (1, 2)
 - Direction vector (+, +)

Loop interchange dependences

- Consider interchanging the following loop, with the dependence graph to the right:

  ```
  for (j = 0; j < N; j++)
  for (i = 0; i < N; i++)
  a[i+1][j+2] = a[i][j] + 1
  ```

 - Distance vector (2, 1)
 - Direction vector (+, +)
 - Distance vector gets swapped!

Loop interchange legality

- Interchanging two loops swaps the order of their entries in distance/direction vectors
 - (0, +) → (+, 0)
 - (+, 0) → (0, +)

 But remember, we can’t have backwards dependences
 - (+, -) → (-, +)
 - Illegal dependence → Loop interchange not legal!

Loop interchange dependences

- Example of illegal interchange:

  ```
  for (i = 0; i < N; i++)
  for (j = 0; j < N; j++)
  a[i+1][j-2] = a[i][j] + 1
  ```

 - Flow dependences turned into anti-dependences
 - Result of computation will change!

Loop fusion/distribution

- Loop fusion: combining two loops into a single loop
 - Improves locality, parallelism
- Loop distribution: splitting a single loop into two loops
 - Can increase parallelism (turn a non-parallelizable loop into a parallelizable loop)
 - Legal as long as optimization maintains dependences
 - Every dependence in the original loop should have a dependence in the optimized loop
 - Optimized loop should not introduce new dependences
Fusion/distribution example

- Code 1:
  ```
  for (i = 0; i < N; i++)
  a[i - 1] = b[i]
  
  for (j = 0; j < N; j++)
  c[j] = a[j]
  ```

- Dependence graph
 ![Dependence Graph](image)
 - All red iterations finish before blue iterations → flow dependence

- Code 2:
  ```
  for (i = 0; i < N; i++)
  a[i - 1] = b[i]
  c[i] = a[i]
  ```

- Dependence graph
 ![Dependence Graph](image)
 - i iterations finish before i+1 iterations → flow dependence now an anti dependence!

Fusion/distribution utility

- Fusion and distribution both legal
- Right code has better locality, but cannot be parallelized due to loop carried dependences
- Left code has worse locality, but blue loop can be parallelized

- Code:
  ```
  for (i = 0; i < N; i++)
  a[i] = a[i - 1]
  for (j = 0; j < N; j++)
  b[j] = a[j]
  ```

- Fusion:
  ```
  for (i = 0; i < N; i++)
  a[i] = a[i - 1]
  ```

- Distribution:
  ```
  b[i] = a[i]
  ```