Loop optimizations
Agenda

- Low level loop optimizations
 - Code motion
 - Strength reduction
 - Unrolling

- High level loop optimizations
 - Loop fusion
 - Loop interchange
 - Loop tiling
Loop optimization

• Low level optimization
 • Moving code around in a single loop
 • Examples: loop invariant code motion, strength reduction, loop unrolling

• High level optimization
 • Restructuring loops, often affects multiple loops
 • Examples: loop fusion, loop interchange, loop tiling
Low level loop optimizations

- Affect a single loop
- Usually performed at three-address code stage or later in compiler
- First problem: identifying loops
 - Low level representation doesn’t have loop statements!
Identifying loops

• First, we must identify *dominators*

 • Node *a* dominates node *b* if every possible execution path that gets to *b* *must* pass through *a*

• Many different algorithms to calculate dominators – we will not cover how this is calculated

• A *back edge* is an edge from *b* to *a* when *a* dominates *b*

• The target of a back edge is a *loop header*
Natural loops

- Will focus on natural loops – loops that arise in structured programs
- For a node \(n \) to be in a loop with header \(h \)
 - \(n \) must be dominated by \(h \)
 - There must be a path in the CFG from \(n \) to \(h \) through a back-edge to \(h \)
- What are the back edges in the example to the right? The loop headers? The natural loops?
Loop invariant code motion

- Idea: some expressions evaluated in a loop never change; they are *loop invariant*
- Can move loop invariant expressions outside the loop, store result in temporary and just use the temporary in each iteration
- Why is this useful?
Identifying loop invariant code

- To determine if a statement

 \[s: a = b \text{ op } c \]

 is loop invariant, find all definitions of \(b \) and \(c \) that reach \(s \)

- A statement \(t \) defining \(b \) reaches \(s \) if there is a path from \(t \) to \(s \) where \(b \) is not re-defined

- \(s \) is loop invariant if both \(b \) and \(c \) satisfy one of the following

 - it is constant

 - all definitions that reach it are from outside the loop

 - only one definition reaches it and that definition is also loop invariant
Moving loop invariant code

- Just because code is loop invariant doesn’t mean we can move it!

- We can move a loop invariant statement \(a = b \ op \ c \) if
 - The statement dominates all loop exits where \(a \) is live
 - There is only one definition of \(a \) in the loop
 - \(a \) is not live before the loop

 - Move instruction to a *preheader*, a new block put right before loop header

```plaintext
do
    if (*)
    break
    a = 5
  while (*)
c = a;

for (...)
    a = 5 + c
    b = a
```
Strength reduction

- Like strength reduction peephole optimization
- Peephole: replace expensive instruction like `a * 2` with `a << 1`
- Replace expensive instruction, multiply, with a cheap one, addition
- Applies to uses of an induction variable
- Opportunity: array indexing

```c
for (i = 0; i < 100; i++)
    A[i] = 0;

i = 0;
L2: if (i >= 100) goto L1
    j = 4 * i + &A
    *j = 0;
    i = i + 1;
    goto L2
L1:
```
Strength reduction

- Like strength reduction peephole optimization
- Peephole: replace expensive instruction like $a \times 2$ with $a << 1$
- Replace expensive instruction, multiply, with a cheap one, addition
- Applies to uses of an \textit{induction variable}
- Opportunity: array indexing

```c
for (i = 0; i < 100; i++)
    A[i] = 0;

i = 0; k = &A;
L2: if (i >= 100) goto L1
    j = k;
    *j = 0;
    i = i + 1; k = k + 4;
    goto L2
L1:
```
Induction variables

- A *basic induction variable* is a variable i
 - whose only definition within the loop is an assignment of the form $i = i \pm c$, where c is loop invariant
 - Intuition: the variable which determines number of iterations is usually an induction variable
- A *mutual induction variable* j may be
 - defined once within the loop, and its value is a linear function of some other induction variable i such that
 \[j = c_1 \times i \pm c_2 \text{ or } j = \frac{i}{c_1} \pm c_2 \]
 where c_1, c_2 are loop invariant
- A *family* of induction variables include a basic induction variable and any related mutual induction variables
Strength reduction algorithm

- Let \(j \) be an induction variable in the family of the basic induction variable \(i \), such that \(j = c1 \times i + c2 \)
- Create a new variable \(j' \)
- Initialize in preheader
 \[j' = c1 \times i + c2 \]
- Track value of \(i \). After \(i = i + c3 \), perform
 \[j' = j' + (c1 \times c3) \]
- Replace definition of \(i \) with
 \[j = j' \]
- Key: \(c1, c2, c3 \) are all loop invariant (or constant), so computations like \((c1 \times c3) \) can be moved outside loop
Linear test replacement

- After strength reduction, the loop test may be the only use of the basic induction variable

- Can now eliminate induction variable altogether

- Algorithm
 - If only use of an induction variable is the loop test and its increment, and if the test is always computed
 - Can replace the test with an equivalent one using one of the mutual induction variables

```
i = 2
for (; i < k; i++)
j = 50*i
... = j
```

```
i = 2; j’ = 50 * i
for (; i < k; i++, j’ += 50)
... = j’
```

Strength reduction

```
i = 2; j’ = 50 * i
for (; j’ < 50*k; j’ += 50)
... = j’
```
Loop unrolling

• Modifying induction variable in each iteration can be expensive

• Can instead *unroll* loops and perform multiple iterations for each increment of the induction variable

• What are the advantages and disadvantages?

```
for (i = 0; i < N; i++)
    A[i] = ...
```

Unroll by factor of 4

```
for (i = 0; i < N; i += 4)
    A[i] = ...
    A[i+1] = ...
    A[i+2] = ...
    A[i+3] = ...
```
High level loop optimizations

• Many useful compiler optimizations require restructuring loops or sets of loops

• Combining two loops together (loop fusion)

• Switching the order of a nested loop (loop interchange)

• Completely changing the traversal order of a loop (loop tiling)

• These sorts of high level loop optimizations usually take place at the AST level (where loop structure is obvious)
Cache behavior

- Most loop transformations target cache performance
- Attempt to increase *spatial* or *temporal* locality
- Locality can be exploited when there is *reuse* of data (for temporal locality) or recent access of nearby data (for spatial locality)
- Loops are a good opportunity for this: many loops iterate through matrices or arrays
- Consider matrix-vector multiply example
 - Multiple traversals of vector: opportunity for spatial and temporal locality
 - Regular access to array: opportunity for spatial locality

\[y = Ax \]

\[
\begin{align*}
\text{for } (i = 0; i < N; i++) \\
&\quad \text{for } (j = 0; j < N; j++) \\
&\quad \quad y[i] += A[i][j] * x[j]
\end{align*}
\]
Loop fusion

- Combine two loops together into a single loop
- Why is this useful?
- Is this always legal?

```
  do I = 1, n
    c[i] = a[i]
  end do
  do I = 1, n
    b[i] = a[i]
  end do
```

```
  do I = 1, n
    c[i] = a[i]
    b[i] = a[i]
  end do
```
Loop interchange

• Change the order of a nested loop

• This is not always legal – it changes the order that elements are accessed!

• Why is this useful?

 • Consider matrix-matrix multiply when A is stored in column-major order (i.e., each column is stored in contiguous memory)

    ```c
    for (i = 0; i < N; i++)
        for (j = 0; j < N; j++)
            y[i] += A[i][j] * x[j]
    ```
Loop interchange

- Change the order of a nested loop
- This is not always legal – it changes the order that elements are accessed!
- Why is this useful?
 - Consider matrix-matrix multiply when A is stored in column-major order (i.e., each column is stored in contiguous memory)

```
for (j = 0; j < N; j++)
  for (i = 0; i < N; i++)
    y[i] += A[i][j] * x[j]
```
Loop tiling

- Also called “loop blocking”
- One of the more complex loop transformations
- Goal: break loop up into smaller pieces to get spatial and temporal locality
- Create new inner loops so that data accessed in inner loops fit in cache
- Also changes iteration order, so may not be legal

for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 y[i] += A[i][j] * x[j]

for (ii = 0; ii < N; ii += B)
 for (jj = 0; jj < N; jj += B)
 for (i = ii; i < ii+B; i++)
 for (j = jj; j < jj+B; j++)
 y[i] += A[i][j] * x[j]
Loop tiling

- Also called “loop blocking”
- One of the more complex loop transformations
- Goal: break loop up into smaller pieces to get spatial and temporal locality
- Create new inner loops so that data accessed in inner loops fit in cache
- Also changes iteration order, so may not be legal

```
for (i = 0; i < N; i++)
  for (j = 0; j < N; j++)
    y[i] += A[i][j] * x[j]
```

```
for (ii = 0; ii < N; ii += B)
  for (jj = 0; jj < N; jj += B)
    for (i = ii; i < ii+B; i++)
      for (j = jj; j < jj+B; j++)
        y[i] += A[i][j] * x[j]
```

Monday, November 30, 15
In a real (Itanium) compiler

GFLOPS relative to -O2; bigger is better

92% of Peak Performance

Monday, November 30, 15
Loop transformations

- Loop transformations can have dramatic effects on performance
- Doing this legally and automatically is very difficult!
- Researchers have developed techniques to determine legality of loop transformations and automatically transform the loop
 - Techniques like *unimodular transform framework* and *polyhedral framework*
 - These approaches will get covered in more detail in advanced compilers course
 - In this class, we will see some simple techniques to reason about high-level loop optimizations