Loop optimizations

Agenda

• Low level loop optimizations
 • Code motion
 • Strength reduction
 • Unrolling
• High level loop optimizations
 • Loop fusion
 • Loop interchange
 • Loop tiling

Loop optimization

• Low level optimization
 • Moving code around in a single loop
 • Examples: loop invariant code motion, strength reduction, loop unrolling
• High level optimization
 • Restructuring loops, often affects multiple loops
 • Examples: loop fusion, loop interchange, loop tiling

Low level loop optimizations

• Affect a single loop
• Usually performed at three-address code stage or later in compiler
• First problem: identifying loops
• Low level representation doesn’t have loop statements!

Identifying loops

• First, we must identify dominators
 • Node a dominates node b if every possible execution path that gets to b must pass through a
 • Many different algorithms to calculate dominators – we will not cover how this is calculated
 • A back edge is an edge from b to a when a dominates b
 • The target of a back edge is a loop header

Natural loops

• Will focus on natural loops – loops that arise in structured programs
• For a node n to be in a loop with header h
 • n must be dominated by h
 • There must be a path in the CFG from n to h through a back-edge to h
• What are the back edges in the example to the right? The loop headers? The natural loops?
Loop invariant code motion

- Idea: some expressions evaluated in a loop never change; they are loop invariant
- Can move loop invariant expressions outside the loop, store result in temporary and just use the temporary in each iteration
- Why is this useful?

Identifying loop invariant code

- To determine if a statement $s: a = b \text{ op } c$
 is loop invariant, find all definitions of b and c that reach s
- A statement t defining b reaches s if there is a path from t to s where b is not re-defined
- s is loop invariant if both b and c satisfy one of the following
 - it is constant
 - all definitions that reach it are from outside the loop
 - only one definition reaches it and that definition is also loop invariant

Moving loop invariant code

- Just because code is loop invariant doesn’t mean we can move it!

```
for (...) do
  a = b + c
  if (*) break
  a = 5; if (*) a = 5
  else a = 6
while (*) c = a;
```

- We can move a loop invariant statement $a = b \text{ op } c$ if
 - The statement dominates all loop exits where a is live
 - There is only one definition of a in the loop
 - a is not live before the loop
- Move instruction to a preheader, a new block put right before loop header

Strength reduction

- Like strength reduction peephole optimization
- Peephole: replace expensive instruction like $a = 2$ with $a \ll 1$
  ```
  for (i = 0; i < 100; i++)
    A[i] = 0;
  i = 0;
  k = &A;
  L2: if (i >= 100) goto L1
    j = 4 * i + &A
    *j = 0;
    i = i + 1;
    goto L2
  L1:
  ```
 - Replace expensive instruction, multiply, with a cheap one, addition
 - Applies to uses of an induction variable
 - Opportunity: array indexing

Induction variables

- A basic induction variable is a variable i
- whose only definition within the loop is an assignment of the form $i = i \pm c$, where c is loop invariant
 - Intuition: the variable which determines number of iterations is usually an induction variable
- A mutual induction variable j may be
 - defined once within the loop, and its value is a linear function of some other induction variable i such that
 $j = c1 * i + c2$ or $j = i \div c1 \pm c2$
 where $c1, c2$ are loop invariant
 - A family of induction variables include a basic induction variable and any related mutual induction variables
Strength reduction algorithm
- Let \(j \) be an induction variable in the family of the basic induction variable \(i \), such that \(j = c1 \times i + c2 \)
- Create a new variable \(j' \)
- Initialize in preheader
 \[j' = c1 \times i + c2 \]
- Track value of \(i \). After \(i = i + c3 \), perform
 \[j' = j' + (c1 \times c3) \]
- Replace definition of \(i \) with
 \[j = j' \]
- Key: \(c1, c2, c3 \) are all loop invariant (or constant), so computations like \((c1 \times c3) \) can be moved outside loop

Linear test replacement
- After strength reduction, the loop test may be the only use of the basic induction variable
- Can now eliminate induction variable altogether
- Algorithm
 - If only use of an induction variable is the loop test and its increment, and if the test is always computed
 - Can replace the test with an equivalent one using one of the mutual induction variables

Loop unrolling
- Modifying induction variable in each iteration can be expensive
- Can instead unroll loops and perform multiple iterations for each increment of the induction variable
- What are the advantages and disadvantages?

High level loop optimizations
- Many useful compiler optimizations require restructuring loops or sets of loops
- Combining two loops together (loop fusion)
- Switching the order of a nested loop (loop interchange)
- Completely changing the traversal order of a loop (loop tiling)
- These sorts of high level loop optimizations usually take place at the AST level (where loop structure is obvious)

Cache behavior
- Most loop transformations target cache performance
- Attempt to increase spatial or temporal locality
- Locality can be exploited when there is reuse of data (for temporal locality) or recent access of nearby data (for spatial locality)
- Loops are a good opportunity for this: many loops iterate through matrices or arrays
- Consider matrix-vector multiply example
- Multiple traversals of vector: opportunity for spatial and temporal locality
- Regular access to array: opportunity for spatial locality

Loop fusion
- Combine two loops together into a single loop
- Why is this useful?
- Is this always legal?
Loop interchange

- Change the order of a nested loop
- This is not always legal – it changes the order that elements are accessed!
- Why is this useful?
 - Consider matrix-matrix multiply when A is stored in column-major order (i.e., each column is stored in contiguous memory)

```
for (i = 0; i < N; i++)
  for (j = 0; j < N; j++)
    y[i] = A[i][j] * x[j]
```

In a real (Itanium) compiler

- Loop transformations can have dramatic effects on performance
- Doing this legally and automatically is very difficult!
- Researchers have developed techniques to determine legality of loop transformations and automatically transform the loop
 - Techniques like unimodular transform framework and polyhedral framework
- These approaches will get covered in more detail in advanced compilers course
- In this class, we will see some simple techniques to reason about high-level loop optimizations

![Graph showing GFLOPS relative to -O2; bigger is better](image)