
Loop optimizations

Monday, November 30, 15

Agenda

• Low level loop optimizations

• Code motion

• Strength reduction

• Unrolling

• High level loop optimizations

• Loop fusion

• Loop interchange

• Loop tiling

Monday, November 30, 15

Loop optimization

• Low level optimization

• Moving code around in a single loop

• Examples: loop invariant code motion, strength
reduction, loop unrolling

• High level optimization

• Restructuring loops, often affects multiple loops

• Examples: loop fusion, loop interchange, loop tiling

Monday, November 30, 15

Low level loop optimizations

• Affect a single loop

• Usually performed at three-address code stage or later in
compiler

• First problem: identifying loops

• Low level representation doesn’t have loop statements!

Monday, November 30, 15

Identifying loops

• First, we must identify dominators

• Node a dominates node b if every possible execution
path that gets to b must pass through a

• Many different algorithms to calculate dominators – we
will not cover how this is calculated

• A back edge is an edge from b to a when a dominates b

• The target of a back edge is a loop header

Monday, November 30, 15

Natural loops
• Will focus on natural loops –

loops that arise in structured
programs

• For a node n to be in a loop
with header h

• n must be dominated by h

• There must be a path in the
CFG from n to h through a
back-edge to h

• What are the back edges in the
example to the right? The loop
headers? The natural loops?

B1

B2

B3

B4

Monday, November 30, 15

Loop invariant code motion

• Idea: some expressions evaluated in a loop never change;
they are loop invariant

• Can move loop invariant expressions outside the loop,
store result in temporary and just use the temporary in
each iteration

• Why is this useful?

Monday, November 30, 15

Identifying loop invariant code

• To determine if a statement

s: a = b op c

is loop invariant, find all definitions of b and c that reach s

• A statement t defining b reaches s if there is a path from
t to s where b is not re-defined

• s is loop invariant if both b and c satisfy one of the following

• it is constant

• all definitions that reach it are from outside the loop

• only one definition reaches it and that definition is also
loop invariant

Monday, November 30, 15

Moving loop invariant code

• Just because code is loop invariant doesn’t mean we can move it!

• We can move a loop invariant statement a = b op c if

• The statement dominates all loop exits where a is live

• There is only one definition of a in the loop

• a is not live before the loop

• Move instruction to a preheader, a new block put right before
loop header

a = 5;
for (...)

if (*)
a = 4 + c

b = a

for (...)
if (*)

a = 5
else

a = 6

do
if (*)

break
a = 5

while (*)
c = a;

for (...)
a = b + c

Monday, November 30, 15

Strength reduction
• Like strength reduction

peephole optimization

• Peephole: replace
expensive instruction like
a * 2 with a << 1

• Replace expensive
instruction, multiply, with a
cheap one, addition

• Applies to uses of an
induction variable

• Opportunity: array
indexing

for (i = 0; i < 100; i++)
A[i] = 0;

	 i = 0;
L2:if (i >= 100) goto L1
	 j = 4 * i + &A
	 *j = 0;
	 i = i + 1;
	 goto L2
L1:

Monday, November 30, 15

Strength reduction
• Like strength reduction

peephole optimization

• Peephole: replace
expensive instruction like
a * 2 with a << 1

• Replace expensive
instruction, multiply, with a
cheap one, addition

• Applies to uses of an
induction variable

• Opportunity: array
indexing

for (i = 0; i < 100; i++)
A[i] = 0;

	 i = 0; k = &A;
L2:if (i >= 100) goto L1
	 j = k;
	 *j = 0;
	 i = i + 1; k = k + 4;
	 goto L2
L1:

Monday, November 30, 15

Induction variables
• A basic induction variable is a variable i

• whose only definition within the loop is an assignment of the
form i = i ± c, where c is loop invariant

• Intuition: the variable which determines number of iterations is
usually an induction variable

• A mutual induction variable j may be

• defined once within the loop, and its value is a linear function of
some other induction variable i such that

j = c1 * i ± c2 or j = i/c1 ± c2

where c1, c2 are loop invariant

• A family of induction variables include a basic induction variable and
any related mutual induction variables

Monday, November 30, 15

Strength reduction algorithm
• Let j be an induction variable in the family of the basic induction

variable i, such that j = c1 * i + c2

• Create a new variable j’

• Initialize in preheader

j’ = c1 * i + c2

• Track value of i. After i = i + c3, perform

j’ = j’ + (c1 * c3)

• Replace definition of i with

j = j’

• Key: c1, c2, c3 are all loop invariant (or constant), so computations
like (c1 * c3) can be moved outside loop

Monday, November 30, 15

Linear test replacement
• After strength reduction, the

loop test may be the only use of
the basic induction variable

• Can now eliminate induction
variable altogether

• Algorithm

• If only use of an induction
variable is the loop test and
its increment, and if the test
is always computed

• Can replace the test with an
equivalent one using one of
the mutual induction
variables

i = 2
for (; i < k; i++)
j = 50*i
... = j

i = 2; j’ = 50 * i
for (; i < k; i++, j’ += 50)
... = j’

i = 2; j’ = 50 * i
for (; j’ < 50*k; j’ += 50)
... = j’

Strength reduction

Linear test replacement

Monday, November 30, 15

Loop unrolling

• Modifying induction
variable in each iteration
can be expensive

• Can instead unroll loops
and perform multiple
iterations for each
increment of the
induction variable

• What are the advantages
and disadvantages?

for (i = 0; i < N; i++)
A[i] = ...

for (i = 0; i < N; i += 4)
A[i] = ...
A[i+1] = ...
A[i+2] = ...
A[i+3] = ...

Unroll by factor of 4

Monday, November 30, 15

High level loop optimizations

• Many useful compiler optimizations require restructuring
loops or sets of loops

• Combining two loops together (loop fusion)

• Switching the order of a nested loop (loop interchange)

• Completely changing the traversal order of a loop (loop
tiling)

• These sorts of high level loop optimizations usually take
place at the AST level (where loop structure is obvious)

Monday, November 30, 15

Cache behavior
• Most loop transformations target cache

performance

• Attempt to increase spatial or temporal
locality

• Locality can be exploited when there is
reuse of data (for temporal locality) or
recent access of nearby data (for spatial
locality)

• Loops are a good opportunity for this: many
loops iterate through matrices or arrays

• Consider matrix-vector multiply example

• Multiple traversals of vector:
opportunity for spatial and temporal
locality

• Regular access to array: opportunity for
spatial locality

y = Ax

x

y A

i

j

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
y[i] += A[i][j] * x[j]

Monday, November 30, 15

Loop fusion

• Combine two loops
together into a single
loop

• Why is this useful?

• Is this always legal?

do I = 1, n
 c[i] = a[i]
end do
do I = 1, n
 b[i] = a[i]
end do

c[1:n]

a[1:n]

b[1:n]

a[1:n]

do I = 1, n
 c[i] = a[i]
 b[i] = a[i]
end do

c[1:n]

a[1:n]

b[1:n]

Monday, November 30, 15

Loop interchange

• Change the order of a nested
loop

• This is not always legal – it
changes the order that
elements are accessed!

• Why is this useful?

• Consider matrix-matrix
multiply when A is stored
in column-major order
(i.e., each column is stored
in contiguous memory)

x

y A

i

j

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
y[i] += A[i][j] * x[j]

Monday, November 30, 15

y A

i

j

x

Loop interchange

• Change the order of a nested
loop

• This is not always legal – it
changes the order that
elements are accessed!

• Why is this useful?

• Consider matrix-matrix
multiply when A is stored
in column-major order
(i.e., each column is stored
in contiguous memory)

for (j = 0; j < N; j++)
for (i = 0; i < N; i++)
y[i] += A[i][j] * x[j]

Monday, November 30, 15

Loop tiling

• Also called “loop blocking”

• One of the more complex
loop transformations

• Goal: break loop up into
smaller pieces to get spatial
and temporal locality

• Create new inner loops
so that data accessed in
inner loops fit in cache

• Also changes iteration
order, so may not be legal

x

y A

i

j

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
y[i] += A[i][j] * x[j]

for (ii = 0; ii < N; ii += B)
for (jj = 0; jj < N; jj += B)
for (i = ii; i < ii+B; i++)
for (j = jj; j < jj+B; j++)
y[i] += A[i][j] * x[j]

Monday, November 30, 15

x

y A

i

j

B

B

Loop tiling

• Also called “loop blocking”

• One of the more complex
loop transformations

• Goal: break loop up into
smaller pieces to get spatial
and temporal locality

• Create new inner loops
so that data accessed in
inner loops fit in cache

• Also changes iteration
order, so may not be legal

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
y[i] += A[i][j] * x[j]

for (ii = 0; ii < N; ii += B)
for (jj = 0; jj < N; jj += B)
for (i = ii; i < ii+B; i++)
for (j = jj; j < jj+B; j++)
y[i] += A[i][j] * x[j]

Monday, November 30, 15

In a real (Itanium) compiler

0

7.5

15.0

22.5

30.0

-O
1

-O
2

+ p
ref

etc
h

+ i
nte

rch
an

ge

+ u
nro

ll-j
am

+ b
loc

kin
g =

 -O
3

gc
c -

O4

GFLOPS relative to -O2; bigger is better

fa
ct

or
 fa

st
er

 th
an

 -O
2

92% of Peak
Performance

Monday, November 30, 15

Loop transformations

• Loop transformations can have dramatic effects on performance

• Doing this legally and automatically is very difficult!

• Researchers have developed techniques to determine legality of loop
transformations and automatically transform the loop

• Techniques like unimodular transform framework and polyhedral
framework

• These approaches will get covered in more detail in advanced
compilers course

• In this class, we will see some simple techniques to reason about
high-level loop optimizations

Monday, November 30, 15

