Agenda

® Low level loop optimizations
. . . ® Code motion
Loop optimizations o Swongh reduction
® Unrolling
® High level loop optimizations
® Loop fusion
® |oop interchange

® Loop tiling

Monday, November 30, 15 Monday, November 30, 15

Loop optimization Low level loop optimizations

® Low level optimization

® Moving code around in a single loop ® Affect a single loop

® Usually performed at three-address code stage or later in

® Examples: loop invariant code motion, strength
compiler

reduction, loop unrolling

® High level optimization ® First problem: identifying loops

® Restructuring loops, often affects multiple loops ® Low level representation doesn’t have loop statements!

® Examples: loop fusion, loop interchange, loop tiling

Monday, November 30, 15 Monday, November 30, 15

|dentifying loops Natural loops

® Will focus on natural loops —
loops that arise in structured
® First, we must identify dominators programs
. . . . ® For anode n to be in a loop
® Node a dominates node b if every possible execution .
with header h

path that gets to b must pass through a
® n must be dominated by h

® Many different algorithms to calculate dominators — we

will not cover how this is calculated ® There must be a path in the

. . CFG from n to h through a
® A back edge is an edge from b to a when a dominates b back-edge to h

® The target of a back edge is a loop header

Monday, November 30, 15 Monday, November 30, 15

Loop invariant code motion

® |dea: some expressions evaluated in a loop never change;
they are loop invariant

® Can move loop invariant expressions outside the loop,
store result in temporary and just use the temporary in
each iteration

® Why is this useful?

|dentifying loop invariant code

® To determine if a statement
ssa=bopc
is loop invariant, find all definitions of b and c that reach s

® A statement t defining b reaches s if there is a path from
t to s where b is not re-defined

® s is loop invariant if both b and c satisfy one of the following
® itis constant
® all definitions that reach it are from outside the loop

® only one definition reaches it and that definition is also
loop invariant

Monday, November 30, 15

Monday, November 30, 15

Moving loop invariant code

® Just because code is loop invariant doesn’t mean we can move it!

do for (...)
if (¥ if (%)
for (...) break a=5
a=b+c a=>5 else
while (*) a=6

C =a;

® We can move a loop invariant statement a = b op c if
® The statement dominates all loop exits where a is live

® There is only one definition of a in the loop

® Move instruction to a preheader, a new block put right before
loop header

Strength reduction

® Like strength reduction

peephole optimization for (i = 0; i < 100; i++)

® Peephole: replace ALl = @;
expensive instruction like

a*2witha<<|

® Replace expensive .
instruction, multiply, with a 1 = Q;
cheap one, addition L2:if (i >= 100) goto L1
j=4*1+8A

® Applies to uses of an *j = 0Q;
induction variable i=1+1;
to L2
® Opportunity: array 'go °

L1:
indexing

Monday, November 30, 15

Monday, November 30, 15

Strength reduction

® Like strength reduction

peephole optimization for (i = 0; i < 100; i++)

® Peephole: replace ALl = @;
expensive instruction like

a*2witha<<|

® Replace expensive
instruction, multiply, with a
cheap one, addition

i=0; k = &A;
L2:if (i >= 100) goto L1

J=K
® Applies to uses of an *j = 0
induction variable i=1+1; k=k+ 4
goto L2

® Opportunity: array

L1:
indexing

Induction variables

® A basic induction variable is a variable i

® whose only definition within the loop is an assignment of the
form i =i + ¢, where c is loop invariant

® |ntuition: the variable which determines number of iterations is
usually an induction variable

® A mutual induction variable j may be

® defined once within the loop, and its value is a linear function of
some other induction variable i such that

j=cl*¥ixc2orj=ilcl £c2
where cl, c2 are loop invariant

® A family of induction variables include a basic induction variable and
any related mutual induction variables

Monday, November 30, 15

Monday, November 30, 15

Strength reduction algorithm

® Letjbe an induction variable in the family of the basic induction
variable i, such that j = cl *i+c2

® Create a new variable j’
® |Initialize in preheader
f=cl*i+c2
® Track value of i.After i =i + c3, perform
SRR
® Replace definition of i with
i=i
® Key:cl,c2,c3 are all loop invariant (or constant), so computations
like (cl * €3) can be moved outside loop

Linear test replacement

® After strength reduction, the i=2
loop test may be the only use of for (; 1 < k; i++)
the basic induction variable j = 50*i

L . . =]
® Can now eliminate induction

variable altogether l Strength reduction

® Algorithm
i=2;3 =50*1i
® |f only use of an induction for (; i < k; i++, j’ += 50)
variable is the loop test and =5
its increment, and if the test

is always computed 1 Linear test replacement

® Can replace the test with an
equivalent one using one of
the mutual induction
variables

i=2;3=50*1i
for (; 3’ < 50*k; j’ += 50)
o= 73

Monday, November 30, 15

Monday, November 30, 15

Loop unrolling

® Modifying induction
variable in each iteration for (i

' =0; 1 < N; i++)
can be expensive A[i]

® Can instead unroll loops
and perform multiple

1 Unroll by factor of 4
iterations for each

increment of the for (i =0; i <N; i +=4)
induction variable A[i] = ...
A[i+1] = ...
® What are the advantages A[i+2] = ...
and disadvantages? A[i+3] = ...

High level loop optimizations

® Many useful compiler optimizations require restructuring
loops or sets of loops

® Combining two loops together (loop fusion)
® Switching the order of a nested loop (loop interchange)

® Completely changing the traversal order of a loop (loop
tiling)

® These sorts of high level loop optimizations usually take
place at the AST level (where loop structure is obvious)

Monday, November 30, 15

Monday, November 30, 15

Cache behavior

® Most loop transformations target cache
performance

[TTTT

® Attempt to increase spatial or temporal ; [T
locality l } } } } }
[T

® Locality can be exploited when there is
reuse of data (for temporal locality) or y
recent access of nearby data (for spatial

A
locality) y = AX
® Loops are a good opportunity for this: many
loops iterate through matrices or arrays

® Consider matrix-vector multiply example
® Multiple traversals of vector: for (1 = 0’ 1 < N ’ 1++)
opportunity for spatial and temporal for '(J =0; J <. N; J++?
locality y[il += A[i1[3] * x[3]

® Regular access to array: opportunity for
spatial locality

Loop fusion

dol=1,n
cfi] = afi]
end do dol=1n
dol=1,n e Combine two loops clil = a[i]
bli] = afi together into a single b[i] = ali]
end do loop end do
ES S| dlin) ® Why is this useful? oftn]
S ===l C{C) ® s this always legal? .

Bt bt

Ll

B bltnl

ik

a[t:n]

Monday, November 30, 15

Monday, November 30, 15

Loop interchange

® Change the order of a nested

loop
—
® This is not always legal — it e
changes the order that [EREE
elements are accessed! i E M—
T
® Why is this useful? l LT
y A

® Consider matrix-matrix
multiply when A is stored
in column-major order
(i.e., each column is stored
in contiguous memory)

for (i = @; i < N; i++)
for (j = 0; j < N; j++)
y[il += A[i1[3] * x[]]

Loop interchange

® Change the order of a nested

loop)
—

e This is not always legal — it EEEEEEDS
changes the order that ‘ AN
elements are accessed! i EEREEN

® Why is this useful? l EEEEEE

y A
® Consider matrix-matrix for (5 = 0; § < N; 3+

.multlply when'A is stored for (i
in column-major order
(i.e., each column is stored
in contiguous memory)

=0; 1 < N; i++)

y[il += A[i1[3] * x[3]

Monday, November 30, 15

Monday, November 30, 15

Loop tiling

“ - for (1 = 0; i < N; i++)
Also called “loop blocking for (5 = @; 3 < N; j+)

® One of the more complex yEil += AL * x[3]

loop transformations

Goal:break loop up into for (ii = 8; ii < N; ii += B)
smaller pieces to get spatial f"; (Jgf 0; jj < N}Jé += Bg
and temporal localit Or A1 = 11; 1 <148, 14t

P 4 for (3 = j3; J < jj+B; j++)
® Create new inner loops y[il += A[i103] * x[3]
so that data accessed in

_—

inner loops fit in cache X
® Also changes iteration | HH
order, so may not be legal i (1]
]
| [
y A

Loop tiling

“ - for (1 = 0; i < N; i++)
Also called “loop blocking for (j = @; 3 < N; j+)

® One of the more complex yEil += AL * x[3]

loop transformations

Goal: break loop up into for (i1 = 0; ii < N; ii += B)
smaller pieces to get spatial o (JJ = @5 33 < N; jj += B)
and temporal locality for (i =1ii; 1 < ii4B; i+4)
for (j = 33; J < 33+B; j++)
e Create new inner loops y[il += ALLI03] * x[3]
so that data accessed in -

inner loops fit in cache (-

® Also changes iteration | |
order, so may not be legal i mui

I

J |

y A

Monday, November 30, 15

Monday, November 30, 15

In a real (Itanium) compiler

GFLOPS relative to -02; bigger is better

300 92% of Peak
__ | Performance
§ 225 +—
c
H
£
& 150
3
&
s
8 75
0 — — — D —
N v N @ Q& > \
S A N
x< < s cé‘% @

Loop transformations

® Loop transformations can have dramatic effects on performance
® Doing this legally and automatically is very difficult!

® Researchers have developed techniques to determine legality of loop
transformations and automatically transform the loop

® Techniques like unimodular transform framework and polyhedral
framework

® These approaches will get covered in more detail in advanced
compilers course

® |n this class, we will see some simple techniques to reason about
high-level loop optimizations

Monday, November 30, 15

Monday, November 30, 15

