Lattice Theory
First, something interesting

• Brouwer Fixed point Theorem
 • Every continuous function \(f \) from a closed disk into itself has at least one fixed point

• More formally:
 • Domain \(D \): a convex, closed, bounded subspace in a plane (generalizes to higher dimensions)
 • Function \(f : D \rightarrow D \)
 • There exists some \(x \) such that \(f(x) = x \)
Intuition

- Consider the one-dimensional case: mapping a line segment onto itself
 - $x \in [0, 1]$
 - $f(x) \in [0, 1]$
 - There must exist some x for which $f(x) = x$
- Examples (in 2D)
 - A mall directory
 - Crumpling up a piece of graph paper
Back to dataflow

• Game plan:
 • Finite partially ordered set with least element: D
 • Function $f : D \to D$
 • Monotonic function $f : D \to D$
 • \exists fixpoint of f
 • \exists least fixpoint of f
 • Generalization to case when D has a greatest element, \top
 • \exists greatest fixpoint of f
 • Generalization to systems of equations
Partially ordered set (poset)

- Set D with a relation \sqsubseteq that is
 - Reflexive: $x \sqsubseteq x$
 - Anti-symmetric: $x \sqsubseteq y$ and $y \sqsubseteq x \Rightarrow y = x$
 - Transitive: $x \sqsubseteq y, y \sqsubseteq z \Rightarrow x \sqsubseteq z$

- Example: set of integers and \leq

- Graphical representation of poset
 - Graph in which nodes are elements of D and relation \sqsubseteq is indicated by arrows
 - Usually omit reflexive and transitive arrows for legibility
 - Not counting reflexive edges, graph is always a DAG (why?)
Another example

- Powerset of any set, ordered by \subseteq is a poset
- In the example, poset elements are \emptyset, \{a\}, \{a, b\}, \{a, b, c\}, etc.
- $X \subseteq Y$ iff $X \subseteq Y$
Finite poset with least element

- Poset in which
 - Set is finite
 - There is a least element that is below all other elements in poset
- Examples
 - Set of integers ordered by \(\leq \) is *not* a finite poset with least element (no least element, not finite)
 - Set of natural numbers ordered by \(\leq \) has a least element (0), but not finite
 - Set of factors of 12, ordered by \(\leq \) has a least element as is finite
 - Powerset example from before is finite (how many elements?) with a least element (\{ \})
Domains

• “Finite poset with least element” is a mouthful, so we will abbreviate this to *domain*

• Later, we will add additional conditions to domains that are of interest to us in the context of dataflow analysis

• (Goal: what is a lattice?)
Functions on domains

• If D is a domain, we can define a function $f : D \rightarrow D$

• Function maps each element of domain on to another element of the domain

• Example: for $D =$ powerset of $\{a, b, c\}$
 • $f(x) = x \cup \{a\}$
 • $g(x) = x - \{a\}$
 • $h(x) = \{a\} - x$
Monotonic functions

• A function $f : D \rightarrow D$ on a domain D is monotonic if

 • $x \sqsubseteq y \Rightarrow f(x) \sqsubseteq f(y)$

• Note: this is not the same as $x \sqsubseteq f(x)$

• This means that x is extensive

• Intuition: think of f as an electrical circuit mapping input to output

 • If f is monotonic, raising the input voltage raises the output voltage (or keeps it the same)

 • If f is extensive, the output voltage is always the same or more than the input voltage
Examples

- Domain D is the powerset of \{a, b, c\}

- Monotonic functions:
 - $f(x) = \{ \}$ (why?)
 - $f(x) = x \cup \{a\}$
 - $f(x) = x - \{a\}$

- Not monotonic
 - $f(x) = \{a\} - x$ (why?)

- Extensivity
 - $f(x) = x \cup \{a\}$ is monotonic and extensive
 - $f(x) = x - \{a\}$ is monotonic but not extensive
 - $f(x) = \{a\} - x$ is neither

- What is a function that is extensive, but not monotonic?
Fixpoints

- Suppose \(f : D \rightarrow D \).
 - A value \(x \) is a **fixpoint** of \(f \) if \(f(x) = x \)
 - \(f \) maps \(x \) to itself
- Examples: \(D \) is a powerset of \(\{a, b, c\} \)
 - Identity function: \(f(x) = x \)
 - Every element is a fixpoint
 - \(f(x) = x \cup \{a\} \)
 - Every set that contains \(a \) is a fixpoint
 - \(f(x) = \{a\} - x \)
 - No fixpoints
Fixpoint theorem

• One form of Knaster-Tarski Theorem:

If D is a domain and $f : D \to D$ is monotonic, then f has at least one fixpoint

• More interesting consequence:

If \bot is the least element of D, then f has a least fixpoint, and that fixpoint is the largest element in the chain

$\bot, f(\bot), f(f(\bot)), f(f(f(\bot))), \ldots, f^n(\bot)$

• Least fixpoint: a fixpoint of f, x such that, if y is a fixpoint of f, then $x \sqsubseteq y$
Examples

- For domain of powersets, \{ \} is the least element
- For identity function, \(f^n(\{ \}) \) is the chain
 \{ \}, \{ \}, \{ \}, \ldots \) so least fixpoint is \{ \}, which is correct
- For \(f(x) = x \cup \{a\} \), we get the chain
 \{ \}, \{a\}, \{a\}, \ldots \) so least fixpoint is \{a\}, which is correct
- For \(f(x) = \{a\} - x \), function is not monotonic, so not guaranteed to have a fixpoint!
- Important observation: as soon as the chain repeats, we have found the fixpoint (why?)
Proof of fixpoint theorem

• First, prove that largest element of chain $f^n(\perp)$ is a fixpoint

• Second, prove that $f^n(\perp)$ is the least fixpoint
Solving equations

• If D is a domain and $f : D \rightarrow D$ is a monotone function on that domain, then the equation $f(x) = x$ has a least fixpoint, given by the largest element in the sequence

$\bot, f(\bot), f(f(\bot)), f(f(f(\bot))) \ldots$

• Proof follows directly from fixpoint theorem
Adding a top

• Now let us consider domains with an element \top, such that for every point x in the domain, $x \leq \top$

• New theorem: if D is a domain with a greatest element \top and $f : D \to D$ is monotonic, then the equation $x = f(x)$ has a greatest solution, and that solution is the smallest element in the sequence

 $\top, f(\top), f(f(\top)), ...$

• Proof?
Multi-argument functions

• If D is a domain, a function $f : D \times D \rightarrow D$ is monotonic if it is monotonic in each argument when the other is held constant.

• Intuition:

 • Electrical circuit has two inputs

 • If you raise either input while holding the other constant, the output either goes up or stays the same
Fixpoints of multi-arg functions

• Can generalize fixpoint theorem in a straightforward way

• If D is a domain and $f, g : D \times D \rightarrow D$ are monotonic, the following system of equations has a least fixpoint solution, calculated in the obvious way

$$x = f(x, y) \text{ and } y = g(x, y)$$

• Can generalize this to more than two variables and domains with greatest elements easily
Lattices

• A bounded lattice is a partially ordered set with a \bot and \top, with two special functions for any pair of points x and y in the lattice:

 • A join: $x \sqcup y$ is the least element that is greater than x and y (also called the least upper bound)

 • A meet: $x \sqcap y$ is the greatest element that is less than x and y (also called the greatest lower bound)

• Are \sqcup and \sqcap monotonic?
More about lattices

- Bounded lattices with a finite number of elements are a special case of domains with \top (why are they not the same?)
- Systems of monotonic functions (including \sqcup and \sqcap) will have fixpoints
- But some lattices are infinite! (example: the lattice for constant propagation)
- It turns out that you can show a monotonic function will have a least fixpoint for any lattice (or domain) of finite height
- Finite height: any totally ordered subset of domain (this is called a chain) must be finite
- Why does this work?
Solving system of equations

- Consider

 \[x = f(x, y, z) \]

 \[y = g(x, y, z) \]

 \[z = h(x, y, z) \]

- Obvious iterative solution: evaluate every function at every step:

 \[f(⊥, ⊥, ⊥) \ldots \]

 \[g(⊥, ⊥, ⊥) \ldots \]

 \[h(⊥, ⊥, ⊥) \ldots \]
Worklist algorithm

- Obvious point: only necessary to re-evaluate functions whose “important” inputs have changed

- Worklist algorithm
 - Initialize worklist with all equations
 - Initialize solution vector S to all \bot
 - While worklist not empty
 - Get equation from worklist
 - Re-evaluate equation based on S, update entry corresponding to lhs in S
 - Put all equations which use this lhs on their rhs in the worklist
 - Claim: the worklist algorithm for constant propagation is an instance of this approach
Mapping worklist algorithm

• Careful: the “variables” in constant propagation are not the individual variable values in a state vector. Each variable (from a fixpoint perspective) is an entire state vector – there are as many variables as there are edges in the CFG

• Functions:
 • Program statements: eval(e,V_{in})
 • These are called *transfer functions*
 • Need to make sure this is monotonic

• Branches
 • Propagates input state vector to output – trivially monotonic

• Merges
 • Use join or meet to combine multiple input variables – monotonic by definition
Constant propagation

• Step 1: choose lattice
 • Use constant lattice (infinite, but finite height)

• Step 2: choose direction of dataflow
 • Run forward through program

• Step 3: create monotonic transfer functions
 • If input goes from \bot to constant, output can only go up. If input goes from constant to \top, output goes to \top

• Step 4: choose confluence operator
 • What do do at merges? For constant propagation, use join