Lattice Theory

First, something interesting

- **Brouwer Fixed point Theorem**
 - Every continuous function f from a closed disk into itself has at least one fixed point
 - More formally:
 - Domain D: a convex, closed, bounded subspace in a plane (generalizes to higher dimensions)
 - Function $f: D \rightarrow D$
 - There exists some x such that $f(x) = x$

Intuition

- Consider the one-dimensional case: mapping a line segment onto itself
 - $x \in [0, 1]$
 - $f(x) \in [0, 1]$
 - There must exist some x for which $f(x) = x$
 - Examples (in 2D)
 - A mall directory
 - Crumpling up a piece of graph paper

Back to dataflow

- Game plan:
 - Finite partially ordered set with least element: D
 - Function $f: D \rightarrow D$
 - Monotonic function $f: D \rightarrow D$
 - \exists fixpoint of f
 - \exists least fixpoint of f
 - Generalization to case when D has a greatest element, \top
 - \exists greatest fixpoint of f
 - Generalization to systems of equations

Partially ordered set (poset)

- Set D with a relation \sqsubseteq that is
 - Reflexive: $x \sqsubseteq x$
 - Anti-symmetric: $x \sqsubseteq y$ and $y \sqsubseteq x \Rightarrow y = x$
 - Transitive: $x \sqsubseteq y, y \sqsubseteq z \Rightarrow x \sqsubseteq z$
- Example: set of integers and \leq
- Graphical representation of poset
 - Graph in which nodes are elements of D and relation \sqsubseteq is indicated by arrows
 - Usually omit reflexive and transitive arrows for legibility
 - Not counting reflexive edges, graph is always a DAG (why?)

Another example

- Powerset of any set, ordered by \subseteq is a poset
 - In the example, poset elements are $\emptyset, \{a\}, \{a, b\}, \{a, b, c\}$, etc.
 - $X \sqsubseteq Y$ if $X \subseteq Y$
Finite poset with least element

• Poset in which
 • Set is finite
 • There is a least element that is below all other elements in poset

Examples

• Set of integers ordered by \leq is not a finite poset with least element (no least element, not finite)
• Set of natural numbers ordered by \leq has a least element (0), but not finite
• Set of factors of 12, ordered by \leq has a least element as is finite
• Powerset example from before is finite (how many elements?) with a least element ({})

Domains

• "Finite poset with least element" is a mouthful, so we will abbreviate this to domain
• Later, we will add additional conditions to domains that are of interest to us in the context of dataflow analysis
 • (Goal: what is a lattice?)

Functions on domains

• If D is a domain, we can define a function $f : D \to D$
• Function maps each element of domain on to another element of the domain

Example: for $D =$ powerset of {a, b, c}

• $f(x) = x \cup \{a\}$
• $g(x) = x - \{a\}$
• $h(x) = \{a\} - x$

Monotonic functions

• A function $f : D \to D$ on a domain D is monotonic if
 • $x \subseteq y \Rightarrow f(x) \subseteq f(y)$
 • Note: this is not the same as $x \subseteq f(x)$
 • This means that x is extensive

Intuition: think of f as an electrical circuit mapping input to output

• If f is monotonic, raising the input voltage raises the output voltage (or keeps it the same)
• If f is extensive, the output voltage is always the same or more than the input voltage

Examples

• Domain D is the powerset of {a, b, c}

• Monotonic functions:
 • $f(x) = \{\}$ (why?)
 • $f(x) = x \cup \{a\}$
 • $f(x) = x - \{a\}$
 • Not monotonic
 • $f(x) = \{a\} - x$ (why?)

• Extensivity
 • $f(x) = x \cup \{a\}$ is monotonic and extensive
 • $f(x) = x - \{a\}$ is monotonic but not extensive
 • $f(x) = \{a\} - x$ is neither

• What is a function that is extensive, but not monotonic?

Fixpoints

• Suppose $f : D \to D$.
 • A value x is a fixed point of f if $f(x) = x$
 • f maps x to itself

Examples: D is a powerset of {a, b, c}

• Identity function: $f(x) = x$
 • Every element is a fixed point
 • $f(x) = x \cup \{a\}$
 • Every set that contains a is a fixed point
 • $f(x) = \{a\} - x$
 • No fixed points
Fixpoint theorem

- One form of Knaster-Tarski Theorem:
 If D is a domain and f: D → D is monotonic, then f has at least one fixpoint
- More interesting consequence:
 If ⊥ is the least element of D, then f has a least fixpoint, and that fixpoint is the largest element in the chain
 ⊥, f(⊥), f(f(⊥)), f(f(f(⊥))) ... f^n(⊥)
- Least fixpoint: a fixpoint of f, x such that, if y is a fixpoint of f, then x ⊑ y

Examples

- For domain of powersets, { } is the least element
- For identity function, P({ }) is the chain
 { }, { }, { }, ... so least fixpoint is { }, which is correct
- For f(x) = x ∪ {a}, we get the chain
 { }, {a}, {a}, ... so least fixpoint is {a}, which is correct
- For f(x) = {a} – x, function is not monotonic, so not guaranteed to have a fixpoint!
- Important observation: as soon as the chain repeats, we have found the fixpoint (why?)

Proof of fixpoint theorem

- First, prove that largest element of chain f^n(⊥) is a fixpoint
- Second, prove that f^n(⊥) is the least fixpoint

Solving equations

- If D is a domain and f: D → D is a monotone function on that domain, then the equation f(x) = x has a least fixpoint, given by the largest element in the sequence
 ⊥, f(⊥), f(f(⊥)), f(f(f(⊥))) ...
- Proof follows directly from fixpoint theorem

Adding a top

- Now let us consider domains with an element ⊤, such that for every point x in the domain, x ⊑ ⊤
- New theorem: if D is a domain with a greatest element ⊤ and f: D → D is monotonic, then the equation x = f(x) has a greatest solution, and that solution is the smallest element in the sequence
 ⊤, f(⊤), f(f(⊤)), ...
- Proof?

Multi-argument functions

- If D is a domain, a function f: D×D → D is monotonic if it is monotonic in each argument when the other is held constant
- Intuition:
 - Electrical circuit has two inputs
 - If you raise either input while holding the other constant, the output either goes up or stays the same
Fixpoints of multi-arg functions

- Can generalize fixpoint theorem in a straightforward way
- If D is a domain and $f, g : D \times D \to D$ are monotonic, the following system of equations has a least fixpoint solution, calculated in the obvious way

 \[x = f(x, y) \text{ and } y = g(x, y) \]

- Can generalize this to more than two variables and domains with greatest elements easily

Lattices

- A bounded lattice is a partially ordered set with a \bot and \top, with two special functions for any pair of points x and y in the lattice:
 - A join $x \sqcup y$ is the least element that is greater than x and y (also called the least upper bound)
 - A meet $x \sqcap y$ is the greatest element that is less than x and y (also called the greatest lower bound)
- Are \sqcup and \sqcap monotonic?

More about lattices

- Bounded lattices with a finite number of elements are a special case of domains with \top (why are they not the same?)
- Systems of monotonic functions (including \sqcup and \sqcap) will have fixpoints
- But some lattices are infinite! (example: the lattice for constant propagation)
- It turns out that you can show a monotonic function will have a least fixpoint for any lattice (or domain) of finite height
- Finite height: any totally ordered subset of domain (this is called a chain) must be finite
- Why does this work?

Solving system of equations

- Consider
 \[x = f(x, y, z) \]
 \[y = g(x, y, z) \]
 \[z = h(x, y, z) \]

- Obvious iterative solution: evaluate every function at every step:
 \[\bot \]
 \[f(\bot, \bot, \bot) \]
 \[g(\bot, \bot, \bot) \]
 \[h(\bot, \bot, \bot) \]

Worklist algorithm

- Obvious point: only necessary to re-evaluate functions whose “important” inputs have changed
- Worklist algorithm
 - Initialize worklist with all equations
 - Initialize solution vector S to all \bot
 - While worklist not empty
 - Get equation from worklist
 - Re-evaluate equation based on S, update entry corresponding to lhs in S
 - Put all equations which use this lhs on their rhs in the worklist
- Claim: the worklist algorithm for constant propagation is an instance of this approach

Mapping worklist algorithm

- Careful: the “variables” in constant propagation are not the individual variable values in a state vector. Each variable (from a fixpoints perspective) is an entire state vector – there are as many variables as there are edges in the CFG
- Functions:
 - Program statements: $\text{eval}(e, V_i)$
 - These are called transfer functions
 - Branches
 - Merges
- Need to make sure this is monotonic

- Use join or meet to combine multiple input variables – monotonic by definition
Constant propagation

• Step 1: choose lattice
 • Use constant lattice (infinite, but finite height)

• Step 2: choose direction of dataflow
 • Run forward through program

• Step 3: create monotonic transfer functions
 • If input goes from \(\bot \) to constant, output can only go up. If input goes from constant to \(\top \), output goes to \(\top \)

• Step 4: choose \textit{confluence operator}
 • What do do at merges? For constant propagation, use join