
Control flow graphs

Monday, November 9, 15

Moving beyond basic blocks

• Up until now, we have focused on single basic blocks

• What do we do if we want to consider larger units of
computation

• Whole procedures?

• Whole program?

• Idea: capture control flow of a program

• How control transfers between basic blocks due to:

• Conditionals

• Loops

Monday, November 9, 15

Representation
• Use standard three-address code

• Jump targets are labeled

• Also label beginning/end of functions

• Want to keep track of targets of jump statements

• Any statement whose execution may immediately follow
execution of jump statement

• Explicit targets: targets mentioned in jump statement

• Implicit targets: statements that follow conditional jump
statements

• The statement that gets executed if the branch is not
taken

Monday, November 9, 15

Running example

A = 4
t1 = A * B
repeat {
t2 = t1/C
if (t2 ≥ W) {
M = t1 * k
t3 = M + I

}
H = I
M = t3 - H

} until (T3 ≥ 0)

Monday, November 9, 15

Running example

 1		 	 A = 4
 2		 	 t1 = A * B
 3	 L1:	 t2 = t1 / C
 4		 	 if t2 < W goto L2
 5		 	 M = t1 * k
 6		 	 t3 = M + I
 7	 L2:	 H = I
 8		 	 M = t3 - H
 9		 	 if t3 ≥ 0 goto L3
10		 	 goto L1
11	 L3:	 halt

Monday, November 9, 15

Control flow graphs

• Divides statements into basic blocks

• Basic block: a maximal sequence of statements I0, I1, I2, ..., In
such that if Ij and Ij+1 are two adjacent statements in this
sequence, then

• The execution of Ij is always immediately followed by the
execution of Ij+1

• The execution of Ij+1 is always immediate preceded by
the execution of Ij

• Edges between basic blocks represent potential flow of
control

Monday, November 9, 15

CFG for running example
A = 4

t1 = A * B

L1: t2 = t1/c

if t2 < W goto L2

M = t1 * k

t3 = M + I

L2: H = I

M = t3 - H

if t3 ≥ 0 goto L3

goto L1

L3: halt

How do we build
this automatically?

Monday, November 9, 15

Constructing a CFG

• To construct a CFG where each node is a basic block

• Identify leaders: first statement of a basic block

• In program order, construct a block by appending
subsequent statements up to, but not including, the next
leader

• Identifying leaders

• First statement in the program

• Explicit target of any conditional or unconditional branch

• Implicit target of any branch

Monday, November 9, 15

Partitioning algorithm
• Input: set of statements, stat(i) = ith statement in input

• Output: set of leaders, set of basic blocks where block(x) is
the set of statements in the block with leader x

• Algorithm
leaders = {1}	 	 //Leaders always includes first statement
for i = 1 to |n|	 //|n| = number of statements

if stat(i) is a branch, then
leaders = leaders ∪ all potential targets

end for
worklist = leaders
while worklist not empty do

x = remove earliest statement in worklist
block(x) = {x}
for (i = x + 1; i ≤ |n| and i ∉ leaders; i++)

block(x) = block(x) ∪ {i}
end for

end while

Monday, November 9, 15

Running example

 1		 	 A = 4
 2		 	 t1 = A * B
 3	 L1:	 t2 = t1 / C
 4		 	 if t2 < W goto L2
 5		 	 M = t1 * k
 6		 	 t3 = M + I
 7	 L2:	 H = I
 8		 	 M = t3 - H
 9		 	 if t3 ≥ 0 goto L3
10		 	 goto L1
11	 L3:	 halt

Leaders =
Basic blocks =

Monday, November 9, 15

Running example

 1		 	 A = 4
 2		 	 t1 = A * B
 3	 L1:	 t2 = t1 / C
 4		 	 if t2 < W goto L2
 5		 	 M = t1 * k
 6		 	 t3 = M + I
 7	 L2:	 H = I
 8		 	 M = t3 - H
 9		 	 if t3 ≥ 0 goto L3
10		 	 goto L1
11	 L3:	 halt

Leaders =	 	 	 {1, 3, 5, 7, 10, 11}
Basic blocks = 	 { {1, 2}, {3, 4}, {5, 6}, {7, 8, 9}, {10}, {11} }

Monday, November 9, 15

Putting edges in CFG
• There is a directed edge from B1 to B2 if

• There is a branch from the last statement of B1 to the first
statement (leader) of B2

• B2 immediately follows B1 in program order and B1 does not end
with an unconditional branch

• Input: block, a sequence of basic blocks

• Output: The CFG

for i = 1 to |block|
x = last statement of block(i)
if stat(x) is a branch, then

for each explicit target y of stat(x)
create edge from block i to block y

end for
if stat(x) is not unconditional then

create edge from block i to block i+1
end for

Monday, November 9, 15

Result
A = 4

t1 = A * B

L1: t2 = t1/c

if t2 < W goto L2

M = t1 * k

t3 = M + I

L2: H = I

M = t3 - H

if t3 ≥ 0 goto L3

goto L1

L3: halt

Monday, November 9, 15

Discussion

• Some times we will also consider the statement-level CFG,
where each node is a statement rather than a basic block

• Either kind of graph is referred to as a CFG

• In statement-level CFG, we often use a node to explicitly
represent merging of control

• Control merges when two different CFG nodes point to
the same node

• Note: if input language is structured, front-end can generate
basic block directly

• “GOTO considered harmful”

Monday, November 9, 15

Statement level CFG
A = 4

t1 = A * B

L1: t2 = t1/c

if t2 < W goto L2

M = t1 * k

t3 = M + I

L2: H = I

M = t3 - H

if t3 ≥ 0 goto L3

L3: halt

goto L1

Monday, November 9, 15

