Instruction scheduling

What is instruction scheduling?

® Code generation has created a sequence of assembly
instructions

® But that is not the only valid order in which instructions could
be executed!

LD A, RI LD C,R4
LD B, R2 LD B, R2
R3 =RI +R2 LD A,RI
LD C,R4 » R5=R4*R2
R5 = R4 * R2 R3 =RI +R2
R6 =R3 + R5 R6 =R3 + R5
ST R6,D ST R6,D

e Different orders can give you better performance, more
instruction level parallelism, etc.

Wednesday, November 4, 15

Why do instruction scheduling?

® Not all instructions are the same

® |oads tend to take longer than stores, multiplies tend to
take longer than adds

® Hardware can overlap execution of instructions (pipelining)
® (Can do some work while waiting for a load to complete

® Hardware can execute multiple instructions at the same
time (superscalar)

® Hardware has multiple functional units

Wednesday, November 4, 15

Different types of hardware

® VLIW (very long instruction word)
® Popular in the 1990s, still common in some DSPs

® Relies on compiler to find best schedule for instructions,
manage instruction-level parallelism

® |nstruction scheduling is vital
® Out-of-order superscalar

® Standard design for most CPUs (some low energy chips, like
in phones, may be in-order)

® Hardware does scheduling, but in limited window of
instructions

® Compiler scheduling still useful to make hardware’s life easier

Wednesday, November 4, 15

Outline

® Constraints on schedule
® Dependences between instructions
® Resource constraints

® Scheduling instructions while respecting constraints
® List scheduling

® Height-based heuristic

Wednesday, November 4, 15

Scheduling constraints

® Are all instruction orders legal?

a=b+c
d=a+3
e=f+d

Wednesday, November 4, 15

Scheduling constraints

® Are all instruction orders legal?

a=b+c
d=a+3
e=f+d

Dependences between instructions prevent reordering

Wednesday, November 4, 15

Data dependences

® Variables/registers defined in one instruction are used in a
later instruction: flow dependence

® Variables/registers used in one instruction are overwritten
by a later instruction: anti dependence

® Variables/registers defined in one instruction are
overwritten by a later instruction: output dependence

® Data dependences prevent instructions from being
reordered, or executed at the same time.

Wednesday, November 4, 15

Other constraints

® Some architectures have more than one ALU

a=b%*c These instructions do not have any
d=e+f dependence. Can be executed in parallel

® But what if there is only one ALU!?

® Cannot execute in parallel

® [f a multiply takes two cycles to complete, cannot even

execute the second instruction immediately after the
first

® Resource constraints are limitations of the hardware
that prevent instructions from executing at a certain time

Wednesday, November 4, 15

Representing constraints

® Dependence constraints and resource constraints limit
valid orders of instructions

® Instruction scheduling goal:

® For each instruction in a program (basic block), assign it
a scheduling slot

® Which functional unit to execute on, and where
® As long as we obey all of the constraints

® So how do we represent constraints?

Wednesday, November 4, 15

Data dependence graph

® Graph that captures data dependence constraints
® FEach node represents one instruction

® Fach edge represents a dependence from one instruction
to another

® |abel edges with instruction latency (how long the first

instruction takes to complete = how long we have to wait
before scheduling the second instruction)

Wednesday, November 4, 15

Example

® ADD takes | cycle tg AB\’ E;

e MUL takes 2 cycles R3=RI+R2
LD C,R4

® LD takes 2 cycles R5 = R4 * R2
R6 = R3 + R5

® ST takes | cycle ST R6. D

Wednesday, November 4, 15

Reservation tables

® Represent resource constraints using reservation tables

® F[or each instruction, table shows which functional units are
occupied in each cycle the instruction executes

® # rows: latency of instruction
® # columns: number of functional units

e TJi][j] marked <> functional unit j occupied during cycle i

® (Caveat: some functional units are pipelined: instruction
takes multiple cycles to complete, but only occupies the
unit for the first cycle

® Some instructions have multiple ways they can execute: one
table per variant

Wednesday, November 4, 15

Example

® Two ALUs, fully pipelined

® One LD/ST unit, not pipelined

® ADDs can execute on ALUO or ALUI
® MULs can execute on ALUO only

® | OADs and STOREs both occupy the LD/ST unit

Wednesday, November 4, 15

Example

® Two ALUs, fully pipelined

® One LD/ST unit, not pipelined

® ADDs can execute on ALUO or ALUI
® MULs can execute on ALUO only

® | OADs and STOREs both occupy the LD/ST unit

ALUO | ALUI | LD/ST

Wednesday, November 4, 15

Example

ALUO | ALUI | LD/ST ALUO | ALUI | LD/ST
ADD() | X LOAD X
X

ALUO | ALUI | LD/ST ALUO | ALUI | LD/ST
ADD(2) X STORE X

ALUO | ALUI | LD/ST
MUL X

Can use reservation tables to see if instructions
can be scheduled: see if tables overlap

MUL still takes two)
cycles. Since ALU is fully
pipelined, only occupies

the ALU for |)

Wednesday, November 4, 15

Using tables

ALUO | ALUI | LD/ST ALUO | ALUI | LD/ST
ADD(I) X LOAD X
X
ALUO | ALUI | LD/ST ALUO | ALUI | LD/ST
ADD(2) X STORE X
ALUO | ALUT | LD/ST Which of the sequences below are valid?
MUL X | = run instructions in same cycle
; = move to next cycle
ADD |ADD MUL ; MUL | ADD
ADD | MUL LOAD | MUL STORE ; LOAD
MUL | MUL LOAD ; STORE

Wednesday, November 4, 15

Scheduling

® (Can use these constraints to schedule a program

® Data dependence graph tells us what instructions are
available for scheduling (have all of their dependences
satisfied)

® Reservation tables help us build schedule by telling us
which functional units are occupied in which cycle

Wednesday, November 4, 15

List scheduling

I Startin cycle 0 Cyce | Awo | AUl | LDsST
2. For each cycle 0
|. Determine which |
instructions are 2
available to execute 3
2. From list of 4
instructions, pick 5
one to schedule, and P
place in schedule -
3. If no more 3
instructions can be
scheduled, move to 9
next cycle 10

Wednesday, November 4, 15

List scheduling

|.LD A,RI
2.LD B,R2
3.R3 =RI +R2
4.LD C,R4
5.R5 = R4 * R2
6.R6 =R3 + R5
7.ST R6,D

Cycle

ALUO

ALUI

LD/ST

0

Vi io|lN|OMNUN]|HAh][W|IDND]|—

o

Wednesday, November 4, 15

List scheduling

|.LD A,RI
2.LD B,R2
3.R3 =RI +R2
4.LD C,R4
5.R5 = R4 * R2
6.R6 =R3 + R5
7.ST R6,D

Cycle ALUO ALUI LD/ST
0 I
I I
2 2
3 2
4 3 4
5 4
6 5
7/

8 6
9 7

o

Wednesday, November 4, 15

Height-based scheduling

® |mportant to prioritize instructions

® Instructions that have a lot of downstream instructions
dependent on them should be scheduled earlier

® |Instruction scheduling NP-hard in general, but height-
based scheduling is effective

® |Instruction height = latency from instruction to farthest-away
leaf

® |eaf node height = instruction latency

® Interior node height = max(heights of children +
instruction latency)

® Schedule instructions with highest height first

Wednesday, November 4, 15

Height-based list scheduling

Cycle ALUO ALUI LD/ST

0 pi
| LDA R | 2
2.1D B, R2 2 4
3.R3=RI +R2 3 4
4.LD C, R4 4 5 |
5.R5 = R4 * R2 5 |
6.R6 = R3 + R5 - 3
7.5T R6, D . -

8 7

9

10

Wednesday, November 4, 15

