
Instruction scheduling

Wednesday, November 4, 15



What is instruction scheduling?
• Code generation has created a sequence of assembly 

instructions

• But that is not the only valid order in which instructions could 
be executed!

• Different orders can give you better performance, more 
instruction level parallelism, etc.

LD A, R1
LD B, R2
R3 = R1 + R2
LD C, R4
R5 = R4 * R2
R6 = R3 + R5
ST R6, D

LD C, R4
LD B, R2
LD A, R1
R5 = R4 * R2
R3 = R1 + R2
R6 = R3 + R5
ST R6, D

Wednesday, November 4, 15



Why do instruction scheduling?

• Not all instructions are the same

• Loads tend to take longer than stores, multiplies tend to 
take longer than adds

• Hardware can overlap execution of instructions (pipelining)

• Can do some work while waiting for a load to complete

• Hardware can execute multiple instructions at the same 
time (superscalar)

• Hardware has multiple functional units

Wednesday, November 4, 15



Different types of hardware
• VLIW (very long instruction word)

• Popular in the 1990s, still common in some DSPs

• Relies on compiler to find best schedule for instructions, 
manage instruction-level parallelism

• Instruction scheduling is vital

• Out-of-order superscalar

• Standard design for most CPUs (some low energy chips, like 
in phones, may be in-order)

• Hardware does scheduling, but in limited window of 
instructions

• Compiler scheduling still useful to make hardware’s life easier

Wednesday, November 4, 15



Outline

• Constraints on schedule

• Dependences between instructions

• Resource constraints

• Scheduling instructions while respecting constraints

• List scheduling

• Height-based heuristic

Wednesday, November 4, 15



Scheduling constraints
• Are all instruction orders legal?

a = b + c

d = a + 3

e = f + d 

Wednesday, November 4, 15



Scheduling constraints
• Are all instruction orders legal?

a = b + c

d = a + 3

e = f + d 

Dependences between instructions prevent reordering

Wednesday, November 4, 15



Data dependences

• Variables/registers defined in one instruction are used in a 
later instruction: flow dependence

• Variables/registers used in one instruction are overwritten 
by a later instruction: anti dependence

• Variables/registers defined in one instruction are 
overwritten by a later instruction: output dependence

• Data dependences prevent instructions from being 
reordered, or executed at the same time.

Wednesday, November 4, 15



Other constraints
• Some architectures have more than one ALU

• But what if there is only one ALU? 

• Cannot execute in parallel

• If a multiply takes two cycles to complete, cannot even 
execute the second instruction immediately after the 
first

• Resource constraints are limitations of the hardware 
that prevent instructions from executing at a certain time

a = b * c

d = e + f
These instructions do not have any 
dependence. Can be executed in parallel

Wednesday, November 4, 15



Representing constraints

• Dependence constraints and resource constraints limit 
valid orders of instructions

• Instruction scheduling goal:

• For each instruction in a program (basic block), assign it 
a scheduling slot

• Which functional unit to execute on, and where

• As long as we obey all of the constraints

• So how do we represent constraints?

Wednesday, November 4, 15



Data dependence graph

• Graph that captures data dependence constraints

• Each node represents one instruction

• Each edge represents a dependence from one instruction 
to another

• Label edges with instruction latency (how long the first 
instruction takes to complete → how long we have to wait 
before scheduling the second instruction)

Wednesday, November 4, 15



Example

• ADD takes 1 cycle

• MUL takes 2 cycles

• LD takes 2 cycles

• ST takes 1 cycle

LD A, R1
LD B, R2
R3 = R1 + R2
LD C, R4
R5 = R4 * R2
R6 = R3 + R5
ST R6, D

Wednesday, November 4, 15



Reservation tables

• Represent resource constraints using reservation tables

• For each instruction, table shows which functional units are 
occupied in each cycle the instruction executes

• # rows: latency of instruction

• # columns: number of functional units

• T[i][j] marked ⇔ functional unit j occupied during cycle i

• Caveat: some functional units are pipelined: instruction 
takes multiple cycles to complete, but only occupies the 
unit for the first cycle

• Some instructions have multiple ways they can execute: one 
table per variant

Wednesday, November 4, 15



Example
• Two ALUs, fully pipelined

• One LD/ST unit, not pipelined

• ADDs can execute on ALU0 or ALU1

• MULs can execute on ALU0 only

• LOADs and STOREs both occupy the LD/ST unit

Wednesday, November 4, 15



Example
• Two ALUs, fully pipelined

• One LD/ST unit, not pipelined

• ADDs can execute on ALU0 or ALU1

• MULs can execute on ALU0 only

• LOADs and STOREs both occupy the LD/ST unit

ALU0 ALU1 LD/ST

Wednesday, November 4, 15



Example
ALU0 ALU1 LD/ST

X

ALU0 ALU1 LD/ST

X

ALU0 ALU1 LD/ST

X

ALU0 ALU1 LD/ST

X

X

ALU0 ALU1 LD/ST

X

ADD(1)

ADD(2)

MUL

LOAD

STORE

MUL still takes two 
cycles. Since ALU is fully 
pipelined, only occupies 

the ALU for 1

Can use reservation tables to see if instructions 
can be scheduled: see if tables overlap

Wednesday, November 4, 15



Using tables
ALU0 ALU1 LD/ST

X

ALU0 ALU1 LD/ST

X

ALU0 ALU1 LD/ST

X

ALU0 ALU1 LD/ST

X

X

ALU0 ALU1 LD/ST

X

ADD(1)

ADD(2)

MUL

LOAD

STORE

Which of the sequences below are valid?
| = run instructions in same cycle
; = move to next cycle

ADD | ADD
ADD | MUL
MUL | MUL

MUL ; MUL | ADD
LOAD | MUL
LOAD ; STORE 

STORE ; LOAD 

Wednesday, November 4, 15



Scheduling

• Can use these constraints to schedule a program

• Data dependence graph tells us what instructions are 
available for scheduling (have all of their dependences 
satisfied)

• Reservation tables help us build schedule by telling us 
which functional units are occupied in which cycle

Wednesday, November 4, 15



List scheduling
1. Start in cycle 0

2. For each cycle

1. Determine which 
instructions are 
available to execute

2. From list of 
instructions, pick 
one to schedule, and 
place in schedule

3. If no more 
instructions can be 
scheduled, move to 
next cycle

Cycle ALU0 ALU1 LD/ST

0

1

2

3

4

5

6

7

8

9

10

Wednesday, November 4, 15



List scheduling

Cycle ALU0 ALU1 LD/ST

0

1

2

3

4

5

6

7

8

9

10

1. LD A, R1
2. LD B, R2
3. R3 = R1 + R2
4. LD C, R4
5. R5 = R4 * R2
6. R6 = R3 + R5
7. ST R6, D

Wednesday, November 4, 15



List scheduling

Cycle ALU0 ALU1 LD/ST

0 1

1 1

2 2

3 2

4 3 4

5 4

6 5

7

8 6

9 7

10

1. LD A, R1
2. LD B, R2
3. R3 = R1 + R2
4. LD C, R4
5. R5 = R4 * R2
6. R6 = R3 + R5
7. ST R6, D

Wednesday, November 4, 15



Height-based scheduling

• Important to prioritize instructions

• Instructions that have a lot of downstream instructions 
dependent on them should be scheduled earlier

• Instruction scheduling NP-hard in general, but height-
based scheduling is effective

• Instruction height = latency from instruction to farthest-away 
leaf

• Leaf node height = instruction latency

• Interior node height = max(heights of children + 
instruction latency)

• Schedule instructions with highest height first

Wednesday, November 4, 15



Height-based list scheduling

Cycle ALU0 ALU1 LD/ST

0 2

1 2

2 4

3 4

4 5 1

5 1

6 3

7 6

8 7

9

10

1. LD A, R1
2. LD B, R2
3. R3 = R1 + R2
4. LD C, R4
5. R5 = R4 * R2
6. R6 = R3 + R5
7. ST R6, D

Wednesday, November 4, 15


