Parsers

What is a parser

• A parser has two jobs:

I) Determine whether a string (program) is *valid* (think: grammatically correct)

2) Determine the structure of a program (think: diagramming a sentence)

Agenda

- How do we define a language?
 - How do we define the set of strings that are grammatically correct
 - Context free grammars
- How do we recognize strings in the language?
 - How can we tell (easily) whether a program is a valid string in the language
 - How can we determine the structure of a program?
 - LL parsers and LR parsers

Languages

- A language is a (possibly infinite) set of strings
- Regular expressions describe regular languages
 - Fundamental drawback: can only use finite state to recognize whether a string is in the language
 - Consider this valid piece of C code:
 - { { { int x; } } }
 - Need to make sure that there are the same number of '{' as '}'
 - How would you write a regular expression to capture that?

Languages

- Key problem: programming language syntax is recursive
 - If statements can be nested inside while loops which can themselves be nested inside if statements which can be nested inside for loops which can be nested inside switch statements ...
- Nesting can be arbitrarily deep
- New formalism for specifying these kinds of recursive languages: Context-free Grammars

Terminology

- Grammar $G = (V_t, V_n, S, P)$
 - V_t is the set of *terminals*
 - V_n is the set of *non-terminals*
 - S is the start symbol
 - P is the set of productions
 - Each production takes the form: $V_n \rightarrow \lambda \mid (V_n \mid V_t) +$
 - Grammar is *context-free* (why?)
- A simple grammar:

 $G = (\{a, b\}, \{S, A, B\}, \{S \rightarrow A B, A \rightarrow A a, A \rightarrow a, B \rightarrow B b, B \rightarrow b\},$ S)

Simple grammar

Backus Naur Form (BNF)

Generating strings

- $S \rightarrow A B$
- $A \rightarrow A a$
- $A \rightarrow a$
- $B \rightarrow B b$

 $B \rightarrow b$

- Given a start rule, productions tell us how to rewrite a non-terminal into a different set of symbols
- Some productions may rewrite to λ.
 That just removes the non-terminal

To derive the string "a a b b b" we can do the following rewrites:

 $S \Rightarrow A B \Rightarrow A a B \Rightarrow a a B \Rightarrow a a B b \Rightarrow$

 $a a B b b \Rightarrow a a b b b$

Terminology

- Strings are composed of symbols
 - AAaaBbbAaisastring
 - We will use Greek letters to represent strings composed of both terminals and non-terminals
- L(G) is the language produced by the grammar G
 - All strings consisting of only terminals that can be produced by G
 - In our example, L(G) = a+b+
 - The language of a context-free grammar is a context-free language
 - All regular languages are context-free, but not vice versa

Why is this useful?

- statement \rightarrow statement ; statement
- statement → while_loop ;
- statement \rightarrow id = lit;
- statement \rightarrow id = id + id ;

while_loop -> while (cond_expr) statment

 $cond_expr \rightarrow id < lit$

Programming language syntax

- Programming language syntax is defined with CFGs
- Constructs in language become non-terminals
 - May use auxiliary non-terminals to make it easier to define constructs

if_stmt \rightarrow if (cond_expr) then statement else_part

else_part \rightarrow else statement

else_part $\rightarrow \lambda$

• Tokens in language become terminals

Parse trees

- Tree which shows how a string was produced by a language
 - Interior nodes of tree: nonterminals
 - Children: the terminals and non-terminals generated by applying a production rule
 - Leaf nodes: terminals

Leftmost derivation

- Rewriting of a given string starts with the leftmost symbol
- Exercise: do a leftmost derivation of the input program

F(V + V)

using the following grammar:

E	\rightarrow	Prefix (E)
E	\rightarrow	V Tail
Prefix	\rightarrow	F
Prefix	\rightarrow	λ
Tail	\rightarrow	+ E
Tail	\rightarrow	λ

• What does the parse tree look like?

Rightmost derivation

- Rewrite using the rightmost non-terminal, instead of the left
- What is the rightmost derivation of this string?

F(V + V)

E	\rightarrow	Prefix (E)
E	\rightarrow	V Tail
Prefix	\rightarrow	F
Prefix	\rightarrow	λ
Tail	\rightarrow	+ E
Tail	\rightarrow	λ

Simple conversions

Top-down vs. Bottom-up parsers

- Top-down parsers expand the parse tree in *pre-order*
 - Identify parent nodes before the children
- Bottom-up parsers expand the parse tree in *post-order*
 - Identify children before the parents
- Notation:
 - LL(I):Top-down derivation with I symbol lookahead
 - LL(k):Top-down derivation with k symbols lookahead
 - LR(I): Bottom-up derivation with I symbol lookahead

What is parsing

- Parsing is recognizing members in a language specified/ defined/generated by a grammar
- When a construct (corresponding to a production in a grammar) is recognized, a typical parser will take some action
 - In a compiler, this action generates an intermediate representation of the program construct
 - In an interpreter, this action might be to perform the action specified by the construct. Thus, if *a+b* is recognized, the value of *a* and *b* would be added and placed in a temporary variable

Top-down parsing

Top-down parsing

- Idea: we know sentence has to start with initial symbol
- Build up partial derivations by predicting what rules are used to expand non-terminals
 - Often called *predictive parsers*
- If partial derivation has terminal characters, match them from the input stream

A simple example $S \rightarrow ABc$

- $A \rightarrow x a A$
- $A \rightarrow y a A$
- $A \rightarrow c$
- $B \rightarrow b$ A sentence in the grammar:
- $B \rightarrow \lambda$ xacc\$

A simple example $S \rightarrow A B c$ $A \rightarrow x a A$ special "end of input" symbol $A \rightarrow y a A$ $A \rightarrow c$ $B \rightarrow b$ • A sentence in the grammar: xacc\$ $B \rightarrow \lambda$

A simple example $S \rightarrow A B c$ $A \rightarrow x a A$ $A \rightarrow y a A$ $A \rightarrow c$ $B \rightarrow b$ • A sentence in the grammar: xacc\$ $B \rightarrow \lambda$

Current derivation: S

A simple example $S \rightarrow A B c$ $A \rightarrow x a A$ $A \rightarrow y a A$ $A \rightarrow c$ $B \rightarrow b$ • A sentence in the grammar: $B \rightarrow \lambda$ xacc\$

Current derivation: A B c \$

Predict rule

A simple example					
	$S \rightarrow A B c S$	\$			
Choose based on <i>first set</i> of rules	$A \rightarrow x a A$				
	$A \rightarrow y a A$				
	$A \rightarrow c$				
	$B \rightarrow b$	•	A sentence in the grammar:		
	$B \rightarrow \lambda$		xacc\$		

Current derivation: x a A B c \$

Predict rule based on next token

A simple example $S \rightarrow A B c$ $A \rightarrow x a A$ $A \rightarrow y a A$ $A \rightarrow c$ $B \rightarrow b$ • A sentence in the grammar: $B \rightarrow \lambda$ xacc\$

Current derivation: x a A B c \$

Match token

A simple example $S \rightarrow A B c$ $A \rightarrow x a A$ $A \rightarrow y a A$ $A \rightarrow c$ $B \rightarrow b$ • A sentence in the grammar: $B \rightarrow \lambda$ xacc\$

Current derivation: x a A B c \$

Match token

A simple example					
	$S \rightarrow A B c S$	\$			
Choose based on <i>first set</i> of rules	$A \rightarrow x a A$				
	$A \rightarrow y a A$				
	$A \rightarrow c$				
	$B \rightarrow b$	•	A sentence in the grammar:		
	$B \rightarrow \lambda$		xacc\$		

Current derivation: x a c B c \$

Predict rule based on next token

A simple example $S \rightarrow A B c$ $A \rightarrow x a A$ $A \rightarrow y a A$ $A \rightarrow c$ $B \rightarrow b$ • A sentence in the grammar: $B \rightarrow \lambda$ xacc\$

Current derivation: x a c B c \$

Match token

Current derivation: $x \ge \frac{1}{2} - \frac{1}{2} = \frac{1}{2} - \frac{1}{2} -$

Predict rule based on next token

A simple example $S \rightarrow A B c$ $A \rightarrow x a A$ $A \rightarrow y a A$ $A \rightarrow c$ $B \rightarrow b$ • A sentence in the grammar: $B \rightarrow \lambda$ xacc\$

Current derivation: x a c c \$

Match token

A simple example $S \rightarrow A B c$ $A \rightarrow x a A$ $A \rightarrow y a A$ $A \rightarrow c$ $B \rightarrow b$ • A sentence in the grammar: $B \rightarrow \lambda$ xacc\$

Current derivation: x a c c \$

Match token

First and follow sets

- First(α): the set of terminals (and/or λ) that begin all strings that can be derived from α
 - First(A) = $\{x, y, \lambda\}$
 - First(xaA) = $\{x\}$
 - First (AB) = {x, y, b}
- Follow(A): the set of terminals (and/ or \$, but no λs) that can appear immediately after A in some partial derivation
 - Follow(A) = $\{b\}$

 $A \rightarrow x a A$ $A \rightarrow y a A$

 $S \rightarrow A B$

- $\mathsf{A} \to \lambda$
- $B \rightarrow b$

First and follow sets

- First(α) = {a $\in V_t \mid \alpha \Rightarrow^* a\beta$ } $\cup \{\lambda \mid \text{if } \alpha \Rightarrow^* \lambda\}$
- Follow(A) = { $a \in V_t \mid S \Rightarrow^+ ... Aa ...$ } \cup {\$ | if S $\Rightarrow^+ ... A$ \$}

S:	start symbol		
<mark>a:</mark>	a terminal symbol		
<mark>A:</mark>	a non-terminal symbol		
<mark>α,β:</mark>	a string composed of terminals and		
	non-terminals (typically, α is the RHS of a production \Rightarrow :		
			derived in I step
		⇒*:	derived in 0 or more steps
		⇒+:	derived in 1 or more steps

Computing first sets

- Terminal: First(a) = {a}
- Non-terminal: First(A)
 - Look at all productions for A

 $A \to X_1 X_2 \dots X_k$

- First(A) \supseteq (First(X₁) λ)
- If $\lambda \in \text{First}(X_1)$, $\text{First}(A) \supseteq (\text{First}(X_2) \lambda)$
- If λ is in First(X_i) for all i, then $\lambda \in First(A)$
- Computing First(α): similar procedure to computing First(A)

Exercise

• What are the first sets for all the non-terminals in following grammar:

 $S \rightarrow A B$ $A \rightarrow x a A$ $A \rightarrow y a A$ $A \rightarrow \lambda$ $B \rightarrow b$ $B \rightarrow A$

Computing follow sets

- Follow(S) = {}
- To compute Follow(A):
 - Find productions which have A on rhs. Three rules:
 - I. $X \rightarrow \alpha \land \beta$: Follow(\land) \supseteq (First(β) \land)
 - 2. $X \rightarrow \alpha \land \beta$: If $\lambda \in First(\beta)$, Follow($\land) \supseteq$ Follow(X)
 - 3. $X \rightarrow \alpha A$: Follow(A) \supseteq Follow(X)
- Note: Follow(X) never has λ in it.
Exercise

• What are the follow sets for

 $S \rightarrow A B$ $A \rightarrow x a A$ $A \rightarrow y a A$ $A \rightarrow \lambda$ $B \rightarrow b$ $B \rightarrow A$

Towards parser generators

- Key problem: as we read the source program, we need to decide what productions to use
- Step I: find the tokens that can tell which production P (of the form $A \rightarrow X_1X_2 \dots X_m$) applies

 $\operatorname{Predict}(P) =$

$$\begin{cases} \operatorname{First}(X_1 \dots X_m) & \text{if } \lambda \notin \operatorname{First}(X_1 \dots X_m) \\ (\operatorname{First}(X_1 \dots X_m) - \lambda) \cup \operatorname{Follow}(A) & \text{otherwise} \end{cases}$$

If next token is in Predict(P), then we should choose this production

Parse tables

- Step 2: build a parse table
 - Given some non-terminal V_n (the non-terminal we are currently processing) and a terminal V_t (the lookahead symbol), the parse table tells us which production P to use (or that we have an error
 - More formally:

 $T:V_n \times V_t \rightarrow P \cup \{Error\}$

Building the parse table

 Start:T[A][t] = //initialize all fields to "error" foreach A:

foreach P with A on its lhs:

foreach t in Predict(P):

$\mathsf{T}[\mathsf{A}][\mathsf{t}] = \mathsf{P}$

• Exercise: build parse table for our toy grammar

I.S \rightarrow A B \$ 2.A \rightarrow x a A 3.A \rightarrow y a A 4.A \rightarrow λ 5.B \rightarrow b

Stack-based parser for LL(I)

- Given the parse table, a stack-based algorithm is much simpler to generate than a recursive descent parser
- Basic algorithm:
 - I. Push the RHS of a production onto the stack
 - 2. Pop a symbol, if it is a terminal, match it
 - 3. If it is a non-terminal, take its production according to the parse table and go to 1
- Note: always start with start state

An example

- 1. $S \rightarrow A B$ 2. $A \rightarrow x a A$ 3. $A \rightarrow y a A$ 4. $A \rightarrow \lambda$ 5. $B \rightarrow b$
- How would a stack-based parser parse:

xayab

Parse stack	Remaining input	Parser action
S	xayab\$	predict I
A B \$	xayab\$	predict 2
x a A B \$	xayab\$	match(x)
a A B \$	ayab\$	match(a)
A B \$	yab\$	predict 3
yaAB\$	yab\$	match(y)
a A B \$	a b \$	match(a)
A B \$	b \$	predict 4
В\$	b \$	predict 5
b \$	b \$	match(b)
\$	\$	Done!

Dealing with semantic actions

- When a construct (corresponding to a production in a grammar) is recognized, a typical parser will invoke a semantic action
 - In a compiler, this action generates an intermediate representation of the program construct
 - In an interpreter, this action might be to perform the action specified by the construct. Thus, if *a+b* is recognized, the value of *a* and *b* would be added and placed in a temporary variable

Dealing with semantic actions

- We can annotate a grammar with *action symbols*
 - Tell the parser to invoke a semantic action routine
- Can simply push action symbols onto stack as well
- When popped, the semantic action routine is called
 - Routine manipulates semantic records on a stack
 - Can generate new records (e.g., to store variable info)
 - Can generate code using existing records
- Example: semantic actions for x = a + 3

```
statement ::= ID = expr #assign
expr ::= term + term #addop
term ::= ID | LITERAL
```

Non-LL(1) grammars

- Not all grammars are LL(I)!
- Consider

```
<stmt> \rightarrow if <expr> then <stmt list> endif
```

```
<stmt> \rightarrow if <expr> then <stmt list> else <stmt list> endif
```

- This is not LL(1) (why?)
- We can turn this in to

<stmt $> \rightarrow$ if <expr> then <stmt list> <if suffix>

 $\langle if suffix \rangle \rightarrow endif$

 $\langle if suffix \rangle \rightarrow else \langle stmt list \rangle endif$

Left recursion

- Left recursion is a problem for LL(I) parsers
 - LHS is also the first symbol of the RHS
- Consider:

 $E \rightarrow E + T$

• What would happen with the stack-based algorithm?

Removing left recursion

LL(k) parsers

- Can look ahead more than one symbol at a time
 - k-symbol lookahead requires extending first and follow sets
 - 2-symbol lookahead can distinguish between more rules:

 $A \rightarrow ax \mid ay$

- More lookahead leads to more powerful parsers
- What are the downsides?

Are all grammars LL(k)?

• No! Consider the following grammar:

$$S \rightarrow E$$

$$E \rightarrow (E + E)$$

$$E \rightarrow (E - E)$$

$$E \rightarrow x$$

- When parsing E, how do we know whether to use rule 2 or 3?
 - Potentially unbounded number of characters before the distinguishing '+' or '-' is found
 - No amount of lookahead will help!

In real languages?

- Consider the if-then-else problem
- if x then y else z
- Problem: else is optional
- if a then if b then c else d
 - Which if does the else belong to?
- This is analogous to a "bracket language": $[i]^j$ ($i \ge j$)

S → [SC
S →
$$\lambda$$
 [[] can be parsed: SS λ C or SSC λ
C →] (it's ambiguous!)
C → λ

Solving the if-then-else problem

- The ambiguity exists at the language level. To fix, we need to define the semantics properly
 - "] matches nearest unmatched ["
 - This is the rule C uses for if-then-else
 - What if we try this?

$$S \rightarrow [S]$$

$$S \rightarrow SI$$

$$SI \rightarrow [SI]$$

$$SI \rightarrow \lambda$$

This grammar is still not LL(I) (or LL(k) for any k!)

Two possible fixes

- If there is an ambiguity, prioritize one production over another
 - e.g., if C is on the stack, always match "]" before matching "λ"

$$S \rightarrow [S C \\ S \rightarrow \lambda \\ C \rightarrow] \\ C \rightarrow \lambda$$

- Another option: change the language!
 - e.g., all if-statements need to be closed with an endif

$$\begin{array}{ll} S & \rightarrow \text{ if } S \ E \\ S & \rightarrow \text{ other} \\ E & \rightarrow \text{ else } S \ \text{endif} \\ E & \rightarrow \text{ endif} \end{array}$$

Parsing if-then-else

- What if we don't want to change the language?
 - C does not require { } to delimit single-statement blocks
- To parse if-then-else, we need to be able to look ahead at the entire rhs of a production before deciding which production to use
 - In other words, we need to determine how many "]" to match before we start matching "["s
- LR parsers can do this!

LR Parsers

- Parser which does a Left-to-right, Right-most derivation
 - Rather than parse top-down, like LL parsers do, parse bottom-up, starting from leaves
- Basic idea: put tokens on a stack until an entire production is found
- Issues:
 - Recognizing the endpoint of a production
 - Finding the length of a production (RHS)
 - Finding the corresponding nonterminal (the LHS of the production)

LR Parsers

- Basic idea:
 - **shift** tokens onto the stack. At any step, keep the set of productions that could generate the read-in tokens
 - **reduce** the RHS of recognized productions to the corresponding non-terminal on the LHS of the production. Replace the RHS tokens on the stack with the LHS non-terminal.

Data structures

- At each state, given the next token,
 - A goto table defines the successor state
 - An *action table* defines whether to
 - shift put the next state and token on the stack
 - reduce an RHS is found; process the production
 - terminate parsing is complete

Simple example

- I. $P \rightarrow S$
- 2. $S \rightarrow x$; S
- 3. $S \rightarrow e$

		Symbol					
		x	• •	е	Р	S	Action
	0	I		3		5	Shift
			2				Shift
State	2	I		3		4	Shift
State	3						Reduce 3
	4						Reduce 2
	5						Accept

Parsing using an LR(0) parser

- Basic idea: parser keeps track, simultaneously, of all possible productions that *could be matched* given what it's seen so far. When it sees a full production, match it.
- Maintain a *parse stack* that tells you what state you're in
 - Start in state 0
- In each state, look up in action table whether to:
 - *shift*: consume a token off the input; look for next state in goto table; push next state onto stack
 - reduce: match a production; pop off as many symbols from state stack as seen in production; look up where to go according to non-terminal we just matched; push next state onto stack
 - *accept*: terminate parse

Example

• Parse "x ; x ; e"

Step	Parse Stack	Remaining Input	Parser Action
Ι	0	x ;x ;e	Shift I
2	0 1	;x;e	Shift 2
3	0 2	x;e	Shift I
4	0 2	; e	Shift 2
5	0 2 2	е	Shift 3
6	0 2 2 3		Reduce 3 (goto 4)
7	0 2 2 4		Reduce 2 (goto 4)
8	0 2 4		Reduce 2 (goto 5)
9	0 5		Accept

LR(k) parsers

- LR(0) parsers
 - No lookahead
 - Predict which action to take by looking only at the symbols currently on the stack
- LR(k) parsers
 - Can look ahead k symbols
 - Most powerful class of deterministic bottom-up parsers
 - LR(I) and variants are the most common parsers

Terminology for LR parsers

• Configuration: a production augmented with a "•"

 $\mathsf{A} \to \mathsf{X}_1 \ ... \ \mathsf{X}_i \bullet \mathsf{X}_{i^+1} \ ... \ \mathsf{X}_j$

- The "•" marks the point to which the production has been recognized. In this case, we have recognized X₁ ... X_i
- Configuration set: all the configurations that can apply at a given point during the parse:
 - $A \rightarrow B \cdot CD$ $A \rightarrow B \cdot GH$ $T \rightarrow B \cdot Z$
- Idea: every configuration in a configuration set is a production that we could be in the process of matching

Configuration closure set

- Include all the configurations necessary to recognize the next symbol after the •
- For each configuration in set:
 - If next symbol is terminal, no new configuration added
 - If next symbol is non-terminal X, for each production of the form $X \rightarrow \alpha$, add configuration $X \rightarrow \cdot \alpha$

$$S \rightarrow E \$$$

$$E \rightarrow E + T | T$$

$$T \rightarrow ID | (E)$$

closure0({S
$$\rightarrow \bullet E$$
 \$}) = {
S $\rightarrow \bullet E$ \$
E $\rightarrow \bullet E + T$
E $\rightarrow \bullet T$
T $\rightarrow \bullet ID$
T $\rightarrow \bullet (E)}$

Successor configuration set

• Starting with the initial configuration set

 $s0 = closure0({S \rightarrow \cdot \alpha })$

an LR(0) parser will find the successor given the next symbol \boldsymbol{X}

- X can be either a terminal (the next token from the scanner) or a non-terminal (the result of applying a reduction)
- Determining the successor s' = go_to0(s, X):
 - For each configuration in s of the form $A \rightarrow \beta \cdot X \gamma$ add $A \rightarrow \beta X \cdot \gamma$ to t
 - s' = closure0(t)

CFSM

- CFSM = Characteristic Finite State Machine
- Nodes are configuration sets (starting from s0)
- Arcs are go_to relationships

Building the goto table

• We can just read this off from the CFSM

Building the action table

- Given the configuration set s:
 - We shift if the next token matches a terminal after the in some configuration

 $A \twoheadrightarrow \alpha \bullet a \ \beta \in {\color{black}{\textbf{s}}} \text{ and } a \in V_t \text{, else error}$

• We reduce production P if the • is at the end of a production

 $B \rightarrow \alpha \bullet \in s$ where production P is $B \rightarrow \alpha$

- Extra actions:
 - shift if goto table transitions between states on a nonterminal
 - accept if we have matched the goal production

Action table

State	0	Shift	
	I	Reduce 2	
	2	Shift	
	3	Accept	

Conflicts in action table

- For LR(0) grammars, the action table entries are unique: from each state, can only shift or reduce
- But other grammars may have conflicts
 - Reduce/reduce conflicts: multiple reductions possible from the given configuration
 - Shift/reduce conflicts: we can either shift or reduce from the given configuration

Shift/reduce conflict

• Consider the following grammar:

$$S \rightarrow A y$$

 $\mathsf{A} \to \mathsf{x} \mid \mathsf{x}\mathsf{x}$

• This leads to the following configuration set (after shifting one "x":

 $A \rightarrow x \cdot x$

 $\mathsf{A} \to \mathsf{x} \bullet$

• Can shift or reduce here

Shift/reduce example (2)

• Consider the following grammar:

$$S \rightarrow A y$$

 $A \rightarrow \lambda \mid x$

• This leads to the following initial configuration set:

$$S \rightarrow \bullet A y$$

$$A \rightarrow \cdot x$$

$$\mathsf{A} \to \lambda \bullet$$

• Can shift or reduce here

Lookahead

- Can resolve reduce/reduce conflicts and shift/reduce conflicts by employing *lookahead*
 - Looking ahead one (or more) tokens allows us to determine whether to shift or reduce
 - (cf how we resolved ambiguity in LL(1) parsers by looking ahead one token)

Semantic actions

- Recall: in LL parsers, we could integrate the semantic actions with the parser
 - Why? Because the parser was predictive
- Why doesn't that work for LR parsers?
 - Don't know which production is matched until parser reduces
- For LR parsers, we put semantic actions at the end of productions
 - May have to rewrite grammar to support all necessary semantic actions
Parsers with lookahead

- Adding lookahead creates an LR(1) parser
 - Built using similar techniques as LR(0) parsers, but uses lookahead to distinguish states
 - LR(1) machines can be much larger than LR(0) machines, but resolve many shift/reduce and reduce/ reduce conflicts
 - Other types of LR parsers are SLR(I) and LALR(I)
 - Differ in how they resolve ambiguities
 - yacc and bison produce LALR(1) parsers

LR(I) parsing

 Configurations in LR(I) look similar to LR(0), but they are extended to include a lookahead symbol

 $A \rightarrow X_{1} \dots X_{i} \bullet X_{i+1} \dots X_{j}, I \text{ (where } I \in V_{t} \cup \lambda)$

• If two configurations differ only in their lookahead component, we combine them

 $A \rightarrow X_1 \dots X_i \bullet X_{i+1} \dots X_j, \{I_1 \dots I_m\}$

Building configuration sets

• To close a configuration

 $B \rightarrow \alpha \cdot A \beta, I$

- Add all configurations of the form $A \rightarrow \cdot \gamma$, *u* where $u \in First(\beta I)$
- Intuition: the lookahead symbol for any configuration is the terminal we expect to see after the configuration has been matched
 - The parse could apply the production for A, and the lookahead after we apply the production should match the next token that would be produced by B

Example

closure I ({S $\rightarrow \bullet E $, { λ }) =				
	$S \rightarrow \bullet E \$, \{\lambda\}$			
E	→ • E + T, {\$}			
	$E \rightarrow \bullet T, \{\$\}$			
	$T \rightarrow \bullet ID, \{\$\}$			
	$T \rightarrow \bullet (E), \{\$\}$			
E	→ • E + T, {+}			
	$E \rightarrow \bullet T, \{+\}$			
	$T \rightarrow \bullet ID, \{+\}$			
	$T \rightarrow \bullet (E), \{+\}$			

Building goto and action tables

- The function gotol (configuration-set, symbol) is analogous to goto0(configuration-set, symbol) for LR(0)
 - Build goto table in the same way as for LR(0)
- Key difference: the action table.

action[s][x] =

• reduce when • is at end of configuration and $x \in$ lookahead set of configuration

 $A \twoheadrightarrow \alpha \bullet, \{... \times ...\} \in s$

• shift when • is before x

$$\mathsf{A} \to \beta \bullet \mathsf{x} \, \mathsf{Y} \in \mathsf{s}$$

Example

- Consider the simple grammar:
 - <program> → begin <stmts> end \$
 - <stmts> → SimpleStmt ; <stmts>
 - <stmts> → begin <stmts> end ; <stmts>
 - $\langle stmts \rangle \rightarrow \lambda$

Action and goto tables

	begin	end	;	SimpleStmt	\$	<program></program>	<stmts></stmts>
0	<mark>S / I</mark>						
I	<mark>S / 4</mark>	R4		<mark>S / 5</mark>			<mark>S / 2</mark>
2		<mark>S / 3</mark>					
3					А		
4	<mark>S / 4</mark>	R4		<mark>S / 5</mark>			S / 7
5			<mark>S / 6</mark>				
6	<mark>S / 4</mark>	R4		<mark>S / 5</mark>			<mark>S / 10</mark>
7		<mark>S / 8</mark>					
8			<mark>S / 9</mark>				
9	<mark>S / 4</mark>	R4		<mark>S / 6</mark>			S / 11
10		R2					
		R3					

<program> → begin <stmts> end \$

<stmts> → SimpleStmt ; <stmts>

<stmts> \rightarrow begin <stmts> end ; <stmts>

Example

 $\langle stmts \rangle \rightarrow \lambda$

• Parse: begin SimpleStmt ; SimpleStmt ; end \$

Step	Parse Stack	Remaining Input	Parser Action
I	0	begin S ; S ; end \$	Shift I
2	0 1	S ; S ; end \$	Shift 5
3	0 5	; S ; end \$	Shift 6
4	0 5 6	S ; end \$	Shift 5
5	0 5 6 5	; end \$	Shift 6
6	0 5 6 5 6	end \$	Reduce 4 (goto 10)
7	0 5 6 5 6 0	end \$	Reduce 2 (goto 10)
8	0 5 6 0	end \$	Reduce 2 (goto 2)
9	0 2	end \$	Shift 3
10	0 2 3	\$	Accept

Problems with LR(I) parsers

- LR(I) parsers are very powerful ...
 - But the table size is much larger than LR(0) as much as a factor of $|V_t|$ (why?)
 - Example: Algol 60 (a simple language) includes several thousand states!
- Storage efficient representations of tables are an important issue

Solutions to the size problem

- Different parser schemes
 - SLR (simple LR): build an CFSM for a language, then add lookahead wherever necessary (i.e., add lookahead to resolve shift/reduce conflicts)
 - What should the lookahead symbol be?
 - To decide whether to reduce using production $A \rightarrow \alpha$, use Follow(A)
 - LALR: merge LR states when they only differ by lookahead symbols