More Dataflow Analysis

Steps to building analysis

• Step 1: Choose lattice
• Step 2: Choose direction of dataflow (forward or backward)
• Step 3: Create transfer function
• Step 4: Choose confluence operator (i.e., what to do at merges)
 • Either join or meet in the lattice
 • Let’s walk through these steps for a new analysis

Liveness analysis

• Which variables are live at a particular program point?
• Used all over the place in compilers
 • Register allocation
 • Loop optimizations

Choose lattice

• What do we want to know?
 • At each program point, want to maintain the set of variables that are live
 • Lattice elements: sets of variables
 • Natural choice for lattice: powerset of variables!

Choose dataflow direction

• A variable is live if it is used later in the program without being redefined
 • At a given program point, we want to know information about what happens later in the program
 • This means that liveness is a backwards analysis
 • Recall that we did liveness backwards when we looked at single basic blocks

Create x-fer functions

• What do we do for a statement like:
 \(x = y + z \)
• If \(x \) was live “before” (i.e., live after the statement), it isn’t now (i.e., is not live before the statement)
• If \(y \) and \(z \) were not live “before,” they are now
 • What about:
 \(x = x \)
Create x-fer functions

- Let's generalize
- For any statement \(s \), we can look at which live variables are killed, and which new variables are made live (generated)
- Which variables are killed in \(s \)?
 - The variables that are defined in \(s \) \(\text{DEF}(s) \)
- Which variables are made live in \(s \)?
 - The variables that are used in \(s \) \(\text{USE}(s) \)
- If the set of variables that are live after \(s \) is \(X \), what is the set of variables live before \(s \)?

\[
T_s(X) = \text{use}(s) \cup (X - \text{def}(s))
\]

Dealing with aliases

- Aliases, as usual, cause problems
- Consider
 \[
 \text{int } x, y, r, s \\
 \text{int } *z, *w; \\
 \text{if } (...) z = &y \text{ else } z = &x \\
 \text{if } (...) w = &r \text{ else } w = &s \\
 *z = *w; // \text{which variable is defined? which is used?}
 \]
- What should \(\text{USE}(^*z = ^*w) \) and \(\text{DEF}(^*z = ^*w) \) be?
- Keep in mind: the goal is to get a list of variables that may be live at a program point
- For now, assume there is no aliasing

Dealing with function calls

- Similar problem as aliases:
 \[
 \text{int } \text{foo}(\text{int } &x, \text{int } &y); // \text{pass by reference!}
 \]
 \[
 \text{void } \text{main}() \{ \\
 \text{int } x, y, z; \\
 z = \text{foo}(x, y); \\
 \}
 \]
- Simple solution: functions can do anything – redefine variables, use variables
- So \(\text{DEF}() \) is \{ \} and \(\text{USE}() \) is \(\text{V} \)
- Real solution: interprocedural analysis, which determines what variables are used and defined in \(\text{foo} \)

Choose confluence operator

- What happens at a merge point?
 \[
 \text{The variables live in to a merge point are the variables that are live along either branch}
 \]
- Confluence operator: Set union (\(\cup \)) of all live sets of outgoing edges

\[
T_{\text{merge}} = \bigcup_{X \in \text{succ}(\text{merge})} X
\]

How to initialize analysis?

- At the end of the program, we know no variables are live → value at exit point is \{ \}
- What about if we're analyzing a single function? Need to make conservative assumption about what may be live
- What about elsewhere in the program?
- We should initialize other sets to \{ \}
An alternate approach

- Dataflow analyses like live-variable analysis are bit-vector analyses: are even more structured than regular dataflow analysis
- Consistent lattice: powerset
- Consistent transfer functions
- Many sources only talk about bitvector dataflow

Bit-vector lattices

- Consider a single element, V, of the powerset(S) lattice
- Each item in S either appears in V or does not: can represent using a single bit
- Can represent V as a bit vector
 - $\{a, b, c\} = <1, 1, 1>$
 - $\{\}$ = $<0, 0, 0>$
 - $\{b, c\} = <0, 1, 1>$
- \cup and \cap (which are just \lor and \land, respectively)

Eliminating merge nodes

- Many dataflow presentations do not use explicit merge nodes in CFG
- How do we handle this?
- Problem: now a node may be a statement and a merge point
- Solution: compose confluence operator and transfer functions
- Note: non-merge nodes have just one successor; this equation works for all nodes!

Simplifying matters

$T(s) = \text{use}(s) \cup \bigcup_{X \in \text{succ}(s)} (X - \text{def}(s))$

- Lets split this up into two different sets
- $\text{OUT}(s)$: the set of variables that are live immediately after a statement is executed
- $\text{IN}(s)$: the set of variables that are live immediately before a statement is executed

Generalizing

- $\text{USE}(s)$ are the variables that become live due to a statement—they are generated by this statement
- $\text{DEF}(s)$ are the variables that stop being live due to a statement—they are killed by this statement

$\text{IN}(s) = \text{gen}(s) \cup (\text{OUT}(s) - \text{kill}(s))$

$\text{OUT}(s) = \bigcup_{t \in \text{succ}(s)} \text{IN}(t)$

Bit-vector analyses

- A bit-vector analysis is any analysis that
 - Operates over the powerset lattice, ordered by \subseteq and with \lor and \land as its meet and join
 - Has transfer functions that can be written in the form:
 - $\text{IN}(s) = \text{gen}(s) \cup (\text{OUT}(s) - \text{kill}(s))$
 - $\text{OUT}(s) = \bigcup_{t \in \text{succ}(s)} \text{IN}(t)$
- Are these transfer functions monotonic? (Hint: if f and g are monotonic, is $f \circ g$ monotonic?)
- gen and kill are dependent on the statement, but not on IN or OUT
- Things are a little different for forward analyses, and some analyses use \cap instead of \cup
Reaching definitions

- What definitions of a variable reach a particular program point
- A definition of variable \(x \) from statement \(s \) reaches a statement \(t \) if there is a path from \(s \) to \(t \) where \(x \) is not redefined
- Especially important if \(x \) is used in \(t \)
- Used to build \textit{def-use} and \textit{use-def} chains, which are key building blocks of other analyses
- Used to determine dependences: if \(x \) is defined in \(s \) and that definition reaches \(t \) then there is a flow dependence from \(s \) to \(t \)
- We used this to determine if statements were loop invariant
- All definitions that reach an expression must originate from outside the loop, or themselves be invariant

Creating a reaching-def analysis

- Can we use a powerset lattice?
- At each program point, we want to know which definitions have reached a particular point
- Can use powerset of set of definitions in the program
- \(V \) is set of variables, \(S \) is set of program statements
- Definition: \(d \in V \times S \)
 - Use a tuple, \(\langle v, s \rangle \)
 - How big is this set?
 - At most \(|V \times S| \) definitions

Forward or backward?

- What do you think?

Choose confluence operator

- Remember: we want to know if a definition \textit{may} reach a program point
- What happens if we are at a merge point and a definition reaches from one branch but not the other?
 - We don’t know which branch is taken!
 - We should union the two sets – any of those definitions can reach
 - We want to avoid getting too many reaching definitions \(\rightarrow \) should start sets at \(\bot \)

Transfer functions for RD

- Forward analysis, so need a slightly different formulation
- Merged data flowing into a statement
 \[
 \begin{align*}
 \text{IN}(s) &= \bigcup_{t \in \text{pred}(s)} \text{OUT}(t) \\
 \text{OUT}(s) &= \text{gen}(s) \cup (\text{IN}(s) - \text{kill}(s))
 \end{align*}
 \]
- What are \textit{gen} and \textit{kill}?
 - \textit{gen}(s): the set of definitions that \textit{may} occur at \(s \)
 - e.g., \textit{gen}(s::x = e) is \(\langle x, s \rangle \)
 - \textit{kill}(s): all previous definitions of variables that are \textit{definitely} redefined by \(s \)
 - e.g., \textit{kill}(s::x = e) is \(\langle x, _ \rangle \)

Available expressions

- We’ve seen this one before
- What is the lattice? powerset of all expressions appearing in a procedure
- Forward or backward?
- Confluence operator?
Transfer functions for meet

- What do the transfer functions look like if we are doing a meet?
\[
\begin{aligned}
IN(S) &= \cap_{t \in \text{pred}(s)} OUT(t) \\
OUT(S) &= \text{gen}(s) \cup (IN(S) - \text{kill}(s))
\end{aligned}
\]
- gen(s): expressions that must be computed in this statement
- kill(s): expressions that use variables that may be defined in this statement
- Note difference between these sets and the sets for reaching definitions or liveness
- Insight: gen and kill must never lead to incorrect results
 - Must not decide an expression is available when it isn't, but OK to be safe and say it isn't
 - Must not decide a definition doesn't reach, but OK to overestimate and say it does

Analysis initialization

- Remember our formalization
 - If we start with everything initialized to \(\bot\), we compute the least fixpoint
 - If we start with everything initialized to \(\top\), we compute the greatest fixpoint
- Which do we want? It depends!
 - Reaching definitions: a definition that may reach this point
 - We want to have as few reaching definitions as possible \(\rightarrow\) use least fixpoint
 - Available expressions: an expression that was definitely computed earlier
 - We want to have as many available expressions as possible \(\rightarrow\) use greatest fixpoint
 - Rule of thumb: if confluence operator is \(\sqcup\), start with \(\bot\), otherwise start with \(\top\)

Analysis initialization (II)

- The set at the entry of a program (for forward analyses) or exit of a program (for backward analyses) may be different
 - One way of looking at this: start statement and end statement have their own transfer functions
 - General rule for bitvector analyses: no information at beginning of analysis, so first set is always \(\{\}\)

Very busy expressions

- An expression is **very busy** if it is computed on every path that leads from a program point
- Why does this matter?
- Can calculate very busy expressions early without wasting computation (since the expression is used at least once on every outgoing path) – this can save space
- Good candidates for loop invariant code motion

Very busy expressions

- Lattice?
- Direction?
- Confluence operator?
- Initialization?
- Transfer functions?
 - Gen? Kill?