Dependence Analysis
Motivating question

• Can the loops on the right be run in parallel?
 • *i.e.*, can different processors run different iterations in parallel?

• What needs to be true for a loop to be parallelizable?
 • Iterations cannot interfere with each other
 • No *dependence* between iterations

```c
for (i = 1; i < N; i++) {
  a[i] = b[i];
  c[i] = a[i - 1];
}

for (i = 1; i < N; i++) {
  a[i] = b[i];
  c[i] = a[i] + b[i - 1];
}
```
Dependences

- A *flow dependence* occurs when one iteration writes a location that a *later* iteration reads.

```c
for (i = 1; i < N; i++) {
    a[i] = b[i];
    c[i] = a[i - 1];
}
```

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>W(a[1])</td>
<td>W(a[2])</td>
<td>W(a[3])</td>
<td>W(a[4])</td>
<td>W(a[5])</td>
<td></td>
</tr>
<tr>
<td>R(b[1])</td>
<td>R(b[2])</td>
<td>R(b[3])</td>
<td>R(b[4])</td>
<td>R(b[5])</td>
<td></td>
</tr>
<tr>
<td>W(c[1])</td>
<td>W(c[2])</td>
<td>W(c[3])</td>
<td>W(c[4])</td>
<td>W(c[5])</td>
<td></td>
</tr>
<tr>
<td>R(a[0])</td>
<td>R(a[1])</td>
<td>R(a[2])</td>
<td>R(a[3])</td>
<td>R(a[4])</td>
<td></td>
</tr>
</tbody>
</table>
Running a loop in parallel

• If there is a dependence in a loop, we cannot guarantee that the loop will run correctly in parallel

• What if the iterations run out of order?
 • Might read from a location before the correct value was written to it

• What if the iterations do not run in lock-step?
 • Same problem!
Other kinds of dependence

- **Anti dependence** – When an iteration reads a location that a later iteration writes (why is this a problem?)

```c
for (i = 1; i < N; i++) {
    a[i - 1] = b[i];
    c[i] = a[i];
}
```

- **Output dependence** – When an iteration writes a location that a later iteration writes (why is this a problem?)

```c
for (i = 1; i < N; i++) {
    a[i] = b[i];
    a[i + 1] = c[i];
}
```
Data dependence concepts

- Dependence source is the earlier statement (the statement at the tail of the dependence arrow)
- Dependence sink is the later statement (the statement at the head of the dependence arrow)

\[
\begin{align*}
 i = 1 & \quad W(a[1]) & R(b[1]) & W(c[1]) & R(a[0]) \\
 i = 2 & \quad W(a[2]) & R(b[2]) & W(c[2]) & R(a[1]) \\
 i = 3 & \quad W(a[3]) & R(b[3]) & W(c[3]) & R(a[2]) \\
 i = 4 & \quad W(a[4]) & R(b[4]) & W(c[4]) & R(a[3]) \\
 i = 5 & \quad W(a[5]) & R(b[5]) & W(c[5]) & R(a[4])
\end{align*}
\]

- Dependences can only go forward in time: always from an earlier iteration to a later iteration.
Using dependences

• If there are no dependences, we can parallelize a loop
 • None of the iterations interfere with each other
• Can also use dependence information to drive other optimizations
 • Loop interchange
 • Loop fusion
 • (We will discuss these later)
• Two questions:
 • How do we represent dependences in loops?
 • How do we determine if there are dependences?
Representing dependences

- Focus on flow dependences for now
- Dependences in straight line code are easy to represent:
 - One statement writes a location (variable, array location, etc.) and another reads that same location
 - Can figure this out using reaching definitions
- What do we do about loops?
 - We often care about dependences between the same statement in different iterations of the loop!

```plaintext
for (i = 1; i < N; i++) {
    a[i + 1] = a[i] + 2
}
```
Iteration space graphs

- Represent each *dynamic* instance of a loop as a point in a graph

- Draw arrows from one point to another to represent dependences

```c
for (i = 0; i < N; i++) {
    a[i + 2] = a[i]
}
```
Iteration space graphs

- Represent each dynamic instance of a loop as a point in a graph
- Draw arrows from one point to another to represent dependences

```c
for (i = 0; i < N; i++) {
    a[i + 2] = a[i]
}
```

- Step 1: Create nodes, 1 for each iteration
 - Note: not 1 for each array location!
Iteration space graphs

• Represent each *dynamic* instance of a loop as a point in a graph

• Draw arrows from one point to another to represent dependences

  ```c
  for (i = 0; i < N; i++) {
    a[i + 2] = a[i]
  }
  ```

• Step 2: Determine which array elements are read and written in each iteration

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
</table>
Iteration space graphs

• Represent each *dynamic* instance of a loop as a point in a graph

• Draw arrows from one point to another to represent dependences

```plaintext
for (i = 0; i < N; i++) {
    a[i + 2] = a[i]
}
```

• Step 3: Draw arrows to represent dependences
2-D iteration space graphs

- Can do the same thing for doubly-nested loops
- 2 loop counters

```c
for (i = 0; i < N; i++)
    for (j = 0; j < N; j++)
        a[i+1][j-2] = a[i][j] + 1
```
Iteration space graphs

- Can also represent output and anti dependences
- Use different kinds of arrows for clarity. E.g.
 - for output
 - for anti

- Crucial problem: Iteration space graphs are potentially infinite representations!
- Can we represent dependences in a more compact way?
Distance and direction vectors

- Compiler researchers have devised *compressed* representations of dependences
 - Capture the same dependences as an iteration space graph
 - May lose *precision* (show more dependences than the loop actually has)

- Two types
 - Distance vectors: captures the “shape” of dependences, but not the particular source and sink
 - Direction vectors: captures the “direction” of dependences, but not the particular shape
Distance vector

- Represent each dependence arrow in an iteration space graph as a vector
- Captures the “shape” of the dependence, but loses where the dependence originates

Distance vector for this iteration space: (2)
- Each dependence is 2 iterations forward
2-D distance vectors

- Distance vector for this graph:
 - (1, -2)
 - +1 in the i direction, -2 in the j direction
- Crucial point about distance vectors: they are always “positive”
 - First non-zero entry has to be positive
 - Dependences can’t go backwards in time
More complex example

- Can have multiple distance vectors

```c
for (i = 0; i < N; i++)
    for (j = 0; j < N; j++)
        a[i+1][j-2] = a[i][j] + a[i-1][j-2]
```

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
More complex example

- Can have multiple distance vectors

\[
\begin{align*}
&\text{for } (i = 0; i < N; i++) \\
&\text{for } (j = 0; j < N; j++) \\
&a[i+1][j-2] = a[i][j] + a[i-1][j-2]
\end{align*}
\]

- Distance vectors
 - \((1, -2)\)
 - \((2, 0)\)

- Important point: order of vectors depends on order of loops, not use in arrays
Problems with distance vectors

- The preceding examples show how distance vectors can summarize all the dependences in a loop nest using just a small number of distance vectors.
- Can’t always summarize as easily.
- Running example:

```plaintext
for (i = 0; i < N; i++)
    a[2*i] = a[i];
```

Diagram:

- Write: a[0], a[2], a[4], a[6], a[8], a[10], a[12]
- Read: a[0], a[1], a[2], a[3], a[4], a[5], a[6]
Loss of precision

• What are the distance vectors for this code?
 • (1), (2), (3), (4) ...

• Note: we have information about the length of each vector, but not about the source of each vector

• What happens if we try to reconstruct the iteration space graph?
Loss of precision

- What are the distance vectors for this code?
 - (1), (2), (3), (4) ...
- Note: we have information about the length of each vector, but not about the source of each vector
- What happens if we try to reconstruct the iteration space graph?
Direction vectors

- The whole point of distance vectors is that we want to be able to succinctly capture the dependences in a loop nest
- But in the previous example, not only did we add a lot of extra information, we still had an infinite number of distance vectors
- Idea: summarize distance vectors, and save only the direction the dependence was in

- $(2, -1) \rightarrow (+, -)$
- $(0, 1) \rightarrow (0, +)$
- $(0, -2) \rightarrow (0, -)$
 - (can’t happen; dependences have to be positive)
- Notation: sometimes use ‘<‘ and ‘>’ instead of ‘+’ and ‘−’
Why use direction vectors?

- Direction vectors lose a lot of information, but do capture some useful information
 - Whether there is a dependence (anything other than a ‘0’ means there is a dependence)
 - Which dimension and direction the dependence is in
- Many times, the only information we need to determine if an optimization is legal is captured by direction vectors
 - Loop parallelization
 - Loop interchange
Loop parallelization
Loop-carried dependence

• The key concept for parallelization is the *loop carried dependence*

• A dependence that crosses loop iterations

• If there is a loop carried dependence, then that loop *cannot* be parallelized

• Some iterations of the loop depend on other iterations of the same loop
Examples

for (i = 0; i < N; i++)
 a[2*i] = a[i];

Later iterations of i loop depend on earlier iterations

for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 a[i+1][j-2] = a[i][j] + 1

Later iterations of both i and j loops depend on earlier iterations
Some subtleties

- Dependences might only be carried over one loop!

```c
for (i = 0; i < N; i++)
    for (j = 0; j < N; j++)
        a[i][j+1] = a[i][j] + 1
```

- Can parallelize i loop, but not j loop
Some subtleties

- Dependences might only be carried over one loop!

```c
for (i = 0; i < N; i++)
    for (j = 0; j < N; j++)
        a[i+1][j] = a[i-1][j] + 1
```

- Can parallelize j loop, but not i loop
Direction vectors

- So how do direction vectors help?
 - If there is a non-zero entry for a loop dimension, that means that there is a loop carried dependence over that dimension
 - If an entry is zero, then that loop can be parallelized!
 - May be able to parallelize inner loop even if entry is not zero, but you have to carefully structure parallel execution
Improving parallelism

- Important point: any dependence can prevent parallelization
- Anti and output dependences are important, not just flow dependences
- But anti and output dependences can be removed by using more storage
 - Like register renaming in out-of-order processors
- In principle, all anti and output dependences can be removed, but this is difficult
- Key question: when are there flow dependences?

```plaintext
for (i = 0; i < N; i++)
a[i] = a[i + 1] + 1

for (i = 0; i < N; i++)
aa[i] = a[i + 1] + 1
```
Data Dependence Tests
Problem formulation

- Given the loop nest:

  ```
  for (i = 0; i < N; i++)
      a[f(i)] = ...
      ... = a[g(i)]
  ```

- A dependence exists if there exist an integer \(i\) and an \(i'\) such that:
 - \(f(i) = g(i')\)
 - \(0 \leq i, i' < N\)
 - If \(i < i'\), write happens before read (flow dependence)
 - If \(i > i'\), write happens after read (anti dependence)
Loop normalization

- Loops that skip iterations can always be *normalized* to loops that don’t, so we only need to consider loops that have unit strides

- Note: this is essentially of the reverse of linear test replacement

\[
\begin{align*}
\text{for } (i = L; i < U; i += S) \\
&\quad \ldots a[i] \ldots \\
\downarrow \\
\text{for } (i = 0; i < (U - L)/S; i += 1) \\
&\quad \ldots a[S*i + L] \ldots
\end{align*}
\]
Diophantine equations

• An equation whose coefficients and solutions are all integers is called a Diophantine equation

• Our question:

\[f(i) = a*i + b \quad g(i) = c*i + d \]

Does \(f(i) = g(i') \) have a solution?

• \(f(i) = g(i') \Rightarrow a*i + b = c*i' + d \Rightarrow a_1*i + a_2*i' = a_3 \)
Solutions to Diophantine eqns

• An equation $a_1i + a_2i' = a_3$ has a solution iff $\gcd(a_1, a_2)$ evenly divides a_3

• Examples
 • $15i + 6j - 9k = 12$ has a solution ($\gcd = 3$)
 • $2i + 7j = 3$ has a solution ($\gcd = 1$)
 • $9i + 6j = 10$ has no solution ($\gcd = 3$)
Why does this work?

• Suppose \(g \) is the gcd(a, b) in \(a*i + b*j = c \)

• Can rewrite equation as
 \[
g*(a'*i + b'*j) = c
 \]
 \[
a'*i + b'*j = c/g
 \]

• \(a' \) and \(b' \) are integers, and relatively prime (gcd = 1) so by choosing \(i \) and \(j \) correctly, can produce any integer, but only integers

• Equation has a solution provided \(c/g \) is an integer
Finding the GCD

• Finding GCD with Euclid’s algorithm

 • Repeat

 a = a mod b

 swap a and b

 until b is 0 (resulting a is the gcd)

• Why? If g divides a and b, then g divides a mod b

gcd(27, 12): a = 27, b = 15
a = 27 mod 15 = 12
a = 15 mod 12 = 3
a = 12 mod 3 = 0
gcd = 3
Downsides to GCD test

- If \(f(i) = g(i') \) *fails* the GCD test, then there is no \(i, i' \) that can produce a dependence \(\rightarrow \) loop has no dependences
- If \(f(i) = g(i') \), there *might* be a dependence, but might not
- \(i \) and \(i' \) that satisfy equation might fall outside bounds
- Loop may be parallelizable, but cannot tell
- Unfortunately, most loops have \(\gcd(a, b) = 1 \), which divides everything
- Other optimizations (loop interchange) can tolerate dependences in certain situations
Other dependence tests

- GCD test: doesn’t account for loop bounds, does not provide useful information in many cases
- Banerjee test (Utpal Banerjee): accurate test, takes directions and loop bounds into account
- Omega test (William Pugh): even more accurate test, precise but can be very slow
- Range test (Blume and Eigenmann): works for non-linear subscripts
- Compilers tend to perform simple tests and only perform more complex tests if they cannot prove non-existence of dependence
Other loop optimizations
Loop interchange

- We’ve seen this one before
- Interchange doubly-nested loop to
 - Improve locality
 - Improve parallelism
 - Move parallel loop to outer loop (coarse grained parallelism)
Loop interchange legality

- We noted that loop interchange is not always legal, because it reorders a computation
- Can we use dependences to determine legality?
Loop interchange dependences

- Consider interchanging the following loop, with the dependence graph to the right:

```plaintext
for (i = 0; i < N; i++)
  for (j = 0; j < N; j++)
    a[i+1][j+2] = a[i][j] + 1
```

- Distance vector (1, 2)
- Direction vector (+, +)
Loop interchange dependences

- Consider interchanging the following loop, with the dependence graph to the right:

```plaintext
for (j = 0; j < N; j++)
for (i = 0; i < N; i++)
a[i+1][j+2] = a[i][j] + 1
```

- Distance vector (2, 1)
- Direction vector (+, +)
- Distance vector gets swapped!
Loop interchange legality

• Interchanging two loops swaps the order of their entries in distance/direction vectors
 • \((0, +) \rightarrow (+, 0)\)
 • \((+, 0) \rightarrow (0, +)\)

• But remember, we can’t have backwards dependences
 • \((+, -) \rightarrow (-, +)\)

• Illegal dependence \(\rightarrow\) Loop interchange not legal!
Loop interchange dependences

- Example of illegal interchange:

```cpp
for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
a[i+1][j-2] = a[i][j] + 1
```
Loop interchange dependences

• Example of illegal interchange:

\[
\begin{align*}
\text{for } (j = 0; j < N; j++) \\
\text{for } (i = 0; i < N; i++) \\
a[i+1][j-2] &= a[i][j] + 1
\end{align*}
\]

• Flow dependences turned into anti-dependences

• Result of computation will change!
Loop fusion/distribution

- Loop fusion: combining two loops into a single loop
 - Improves locality, parallelism
- Loop distribution: splitting a single loop into two loops
 - Can increase parallelism (turn a non-parallelizable loop into a parallelizable loop)
- Legal as long as optimization maintains dependences
 - Every dependence in the original loop should have a dependence in the optimized loop
 - Optimized loop should not introduce new dependences
Fusion/distribution example

• Code 1:
 for (i = 0; i < N; i++)
 a[i - 1] = b[i]

 for (j = 0; j < N; j++)
 c[j] = a[j]

• Dependence graph

 All red iterations finish before blue iterations \rightarrow flow dependence

• Code 2:
 for (i = 0; i < N; i++)
 a[i - 1] = b[i]

 for (i = 0; i < N; i++)
 c[i] = a[i]

• Dependence graph

 i iterations finish before i+1 iterations \rightarrow flow dependence now an anti dependence!
Fusion/distribution utility

\[
\begin{align*}
&\text{for (}i = 0; i < N; i++\text{) } \quad \text{Fusion} \\
&a[i] = a[i - 1] \\
&\text{for (}j = 0; j < N; j++\text{) } \quad \text{Distribution} \\
&b[j] = a[j]
\end{align*}
\]

- Fusion and distribution both legal
- Right code has better locality, but cannot be parallelized due to loop carried dependences
- Left code has worse locality, but blue loop can be parallelized