Control flow graphs and loop optimizations
Agenda

• Building control flow graphs
• Low level loop optimizations
 • Code motion
 • Strength reduction
 • Unrolling
• High level loop optimizations
 • Loop fusion
 • Loop interchange
 • Loop tiling
Moving beyond basic blocks

- Up until now, we have focused on single basic blocks
- What do we do if we want to consider larger units of computation
 - Whole procedures?
 - Whole program?
- Idea: capture control flow of a program
 - How control transfers between basic blocks due to:
 - Conditionals
 - Loops
Representation

- Use standard three-address code
- Jump targets are labeled
- Also label beginning/end of functions
- Want to keep track of targets of jump statements
 - Any statement whose execution may immediately follow execution of jump statement
 - *Explicit* targets: targets mentioned in jump statement
 - *Implicit* targets: statements that follow conditional jump statements
 - The statement that gets executed if the branch is not taken
Running example

\[A = 4 \]
\[t_1 = A \times B \]
repeat {
 \[t_2 = t_1 / C \]
 if \(t_2 \geq W \) {
 \[M = t_1 \times k \]
 \[t_3 = M + I \]
 }
 \[H = I \]
 \[M = t_3 - H \]
} until \(T_3 \geq 0 \)
Running example

1. A = 4
2. \(t_1 = A \times B \)
3. \(L_1: \) \(t_2 = t_1 / C \)
4. if \(t_2 < W \) goto \(L_2 \)
5. \(M = t_1 \times k \)
6. \(t_3 = M + I \)
7. \(L_2: \) \(H = I \)
8. \(M = t_3 - H \)
9. if \(t_3 \geq 0 \) goto \(L_3 \)
10. goto \(L_1 \)
11. \(L_3: \) halt
Control flow graphs

• Divides statements into *basic blocks*

• Basic block: a maximal sequence of statements $l_0, l_1, l_2, \ldots, l_n$ such that if l_j and l_{j+1} are two adjacent statements in this sequence, then

 • The execution of l_j is always immediately followed by the execution of l_{j+1}

 • The execution of l_{j+1} is always immediately preceded by the execution of l_j

• Edges between basic blocks represent potential flow of control
CFG for running example

A = 4
\(t_1 = A \times B \)

\[L1: \quad t_2 = \frac{t_1}{c} \]
\(\text{if } t_2 < W \text{ goto L2} \)

\[M = t_1 \times k \]
\[t_3 = M + I \]

\[L2: \quad H = I \]
\[M = t_3 - H \]
\(\text{if } t_3 \geq 0 \text{ goto L3} \)

\[L3: \text{ halt} \]

How do we build this automatically?
Constructing a CFG

• To construct a CFG where each node is a basic block
 • Identify *leaders*: first statement of a basic block
 • In program order, construct a block by appending subsequent statements up to, but not including, the next leader

• Identifying leaders
 • First statement in the program
 • Explicit target of any conditional or unconditional branch
 • Implicit target of any branch
Partitioning algorithm

- Input: set of statements, \(\text{stat}(i) = i^{th} \) statement in input
- Output: set of leaders, set of basic blocks where \(\text{block}(x) \) is the set of statements in the block with leader \(x \)
- Algorithm

\[
\begin{align*}
\text{leaders} &= \{1\} \quad \text{//Leaders always includes first statement} \\
\text{for } i = 1 \text{ to } |n| \quad \text{//}|n| = \text{number of statements} \\
& \quad \text{if stat}(i) \text{ is a branch, then} \\
& \quad \quad \text{leaders} = \text{leaders} \cup \text{all potential targets} \\
\text{end for} \\
\text{worklist} &= \text{leaders} \\
\text{while worklist not empty do} \\
\text{x} &= \text{remove earliest statement in worklist} \\
\text{block(x)} &= \{x\} \\
\text{for } (i = x + 1; i \leq |n| \text{ and } i \notin \text{leaders}; i++) \\
& \quad \text{block(x)} = \text{block(x)} \cup \{i\} \\
\text{end for} \\
\text{end while}
\]
Running example

1 A = 4
2 t1 = A * B
3 L1: t2 = t1 / C
4 if t2 < W goto L2
5 M = t1 * k
6 t3 = M + I
7 L2: H = I
8 M = t3 - H
9 if t3 ≥ 0 goto L3
10 goto L1
11 L3: halt

Leaders =
Basic blocks =
Running example

1 A = 4
2 t1 = A * B
3 \textbf{L1:} t2 = t1 / C
4 if t2 < W goto \textbf{L2}
5 M = t1 * k
6 t3 = M + I
7 \textbf{L2:} H = I
8 M = t3 - H
9 if t3 \geq 0 goto \textbf{L3}
10 goto \textbf{L1}
11 \textbf{L3:} halt

Leaders = \{1, 3, 5, 7, 10, 11\}
Basic blocks = \{\{1, 2\}, \{3, 4\}, \{5, 6\}, \{7, 8, 9\}, \{10\}, \{11\}\}
Putting edges in CFG

- There is a directed edge from \(B_1 \) to \(B_2 \) if
 - There is a branch from the last statement of \(B_1 \) to the first statement (leader) of \(B_2 \)
 - \(B_2 \) immediately follows \(B_1 \) in program order and \(B_1 \) does not end with an unconditional branch

- Input: \(block \), a sequence of basic blocks

- Output: The CFG

\[
\begin{align*}
\text{for } i &= 1 \text{ to } |block| \\
& \quad x = \text{last statement of } block(i) \\
& \quad \text{if stat}(x) \text{ is a branch, then} \\
& \quad \quad \text{for each explicit target } y \text{ of stat}(x) \\
& \quad \quad \quad \text{create edge from block } i \text{ to block } y \\
& \quad \quad \text{end for} \\
& \quad \text{if stat}(x) \text{ is not unconditional then} \\
& \quad \quad \text{create edge from block } i \text{ to block } i+1 \\
& \quad \text{end for}
\end{align*}
\]
A = 4
\(t_1 = A \times B\)

\(L_1: \ t_2 = \frac{t_1}{c}\)
if \(t_2 < W\) goto \(L_2\)

\(M = t_1 \times k\)
\(t_3 = M + I\)

\(L_2: \ H = I\)
\(M = t_3 - H\)
if \(t_3 \geq 0\) goto \(L_3\)

\(L_3: \text{halt}\)
Discussion

• Some times we will also consider the *statement-level* CFG, where each node is a statement rather than a basic block

• Either kind of graph is referred to as a CFG

• In statement-level CFG, we often use a node to explicitly represent *merging* of control

• Control merges when two different CFG nodes point to the same node

• Note: if input language is *structured*, front-end can generate basic block directly

• “GOTO considered harmful”
Statement level CFG

A = 4

t1 = A * B

L1: t2 = t1/c

if t2 < W goto L2

M = t1 * k

t3 = M + I

L2: H = I

M = t3 - H

if t3 ≥ 0 goto L3

L3: halt

goto L1
Loop optimization

- Low level optimization
 - Moving code around in a single loop
 - Examples: loop invariant code motion, strength reduction, loop unrolling

- High level optimization
 - Restructuring loops, often affects multiple loops
 - Examples: loop fusion, loop interchange, loop tiling
Low level loop optimizations

• Affect a single loop
• Usually performed at three-address code stage or later in compiler
• First problem: identifying loops
 • Low level representation doesn’t have loop statements!
Identifying loops

• First, we must identify dominators

 • Node a dominates node b if every possible execution path that gets to b must pass through a

• Many different algorithms to calculate dominators – we will not cover how this is calculated

• A back edge is an edge from b to a when a dominates b

• The target of a back edge is a loop header
Natural loops

• Will focus on natural loops – loops that arise in structured programs

• For a node \(n \) to be in a loop with header \(h \)
 • \(n \) must be dominated by \(h \)
 • There must be a path in the CFG from \(n \) to \(h \) through a back-edge to \(h \)

• What are the back edges in the example to the right? The loop headers? The natural loops?
Loop invariant code motion

- Idea: some expressions evaluated in a loop never change; they are *loop invariant*

- Can move loop invariant expressions outside the loop, store result in temporary and just use the temporary in each iteration

- Why is this useful?
Identifying loop invariant code

• To determine if a statement
 \[s: a = b \text{ op } c \]
 is loop invariant, find all definitions of \(b \) and \(c \) that reach \(s \)

• A statement \(t \) defining \(b \) reaches \(s \) if there is a path from \(t \) to \(s \) where \(b \) is not re-defined

• \(s \) is loop invariant if both \(b \) and \(c \) satisfy one of the following
 • it is constant
 • all definitions that reach it are from outside the loop
 • only one definition reaches it and that definition is also loop invariant
Moving loop invariant code

• Just because code is loop invariant doesn’t mean we can move it!

 do
 if (*)
 break
 a = 5
 while (*)
 c = a;

 for (...)
 if (*)
 a = 5
 else
 a = 6
 b = a

• We can move a loop invariant statement \(a = b \ op \ c \) if

 • The statement dominates all loop exits where \(a \) is live
 • There is only one definition of \(a \) in the loop
 • \(a \) is not live before the loop

• Move instruction to a preheader, a new block put right before loop header
Strength reduction

- Like strength reduction peephole optimization
- Peephole: replace expensive instruction like $a \times 2$ with $a \ll 1$
- Replace expensive instruction, multiply, with a cheap one, addition
- Applies to uses of an induction variable
- Opportunity: array indexing

```
for (i = 0; i < 100; i++)
    A[i] = 0;
```

```
i = 0;
L2: if (i >= 100) goto L1
    j = 4 * i + &A
    *j = 0;
i = i + 1;
goto L2
```

L1:
Strength reduction

- Like strength reduction peephole optimization
- Peephole: replace expensive instruction like $a \times 2$ with $a \ll 1$
- Replace expensive instruction, multiply, with a cheap one, addition
- Applies to uses of an induction variable
- Opportunity: array indexing

```c
for (i = 0; i < 100; i++)
    A[i] = 0;
```

```c
i = 0; k = &A;
L2: if (i >= 100) goto L1
    j = k;
    *j = 0;
    i = i + 1; k = k + 4;
goto L2
```

L1:
Induction variables

• A *basic induction variable* is a variable j

• whose only definition within the loop is an assignment of the form $j = j \pm c$, where c is loop invariant

• Intuition: the variable which determines number of iterations is usually an induction variable

• A *mutual induction variable* i may be

• defined once within the loop, and its value is a linear function of some other induction variable j such that

 \[i = c_1 * j \pm c_2 \text{ or } i = j/c_1 \pm c_2 \]

 where c_1, c_2 are loop invariant

• A *family* of induction variables include a basic induction variable and any related mutual induction variables
Strength reduction algorithm

- Let i be an induction variable in the family of the basic induction variable j, such that $i = c_1 \times j + c_2$

- Create a new variable i’

- Initialize in preheader

 $$i' = c_1 \times j + c_2$$

- Track value of j. After $j = j + c_3$, perform

 $$i' = i' + (c_1 \times c_3)$$

- Replace definition of i with

 $$i = i'$$

- Key: c_1, c_2, c_3 are all loop invariant (or constant), so computations like $(c_1 \times c_3)$ can be moved outside loop
Linear test replacement

- After strength reduction, the loop test may be the only use of the basic induction variable
- Can now eliminate induction variable altogether
- Algorithm
 - If only use of an induction variable is the loop test and its increment, and if the test is always computed
 - Can replace the test with an equivalent one using one of the mutual induction variables

```
i = 2
for (; i < k; i++)
  j = 50*i
  ... = j

↓ Strength reduction

i = 2; j' = 50 * i
for (; i < k; i++, j' += 50)
  ... = j'

↓ Linear test replacement

i = 2; j' = 50 * i
for (; j' < 50*k; j' += 50)
  ... = j'
```
Loop unrolling

- Modifying induction variable in each iteration can be expensive

- Can instead *unroll* loops and perform multiple iterations for each increment of the induction variable

- What are the advantages and disadvantages?

```c
for (i = 0; i < N; i++)
    A[i] = ...;
```

Unroll by factor of 4

```c
for (i = 0; i < N; i += 4)
    A[i] = ...;
    A[i+1] = ...;
    A[i+2] = ...;
    A[i+3] = ...;
```
High level loop optimizations

• Many useful compiler optimizations require restructuring loops or sets of loops
• Combining two loops together (loop fusion)
• Switching the order of a nested loop (loop interchange)
• Completely changing the traversal order of a loop (loop tiling)
• These sorts of high level loop optimizations usually take place at the AST level (where loop structure is obvious)
Cache behavior

- Most loop transformations target cache performance
- Attempt to increase *spatial* or *temporal* locality
- Locality can be exploited when there is reuse of data (for temporal locality) or recent access of nearby data (for spatial locality)
- Loops are a good opportunity for this: many loops iterate through matrices or arrays
- Consider matrix-vector multiply example
 - Multiple traversals of vector: opportunity for spatial and temporal locality
 - Regular access to array: opportunity for spatial locality

\[
\text{for (i = 0; i < N; i++)}
\]
\[
\text{for (j = 0; j < N; j++)}
\]
\[
y[i] += A[i][j] \times x[j]
\]
Loop fusion

- Combine two loops together into a single loop
- Why is this useful?
- Is this always legal?

\[
\begin{align*}
\text{do } & l = 1, n \\
& c[i] = a[i] \\
\text{end do} \\
\text{do } & l = 1, n \\
& b[i] = a[i] \\
\text{end do}
\end{align*}
\]

\[
\begin{align*}
\text{do } & l = 1, n \\
& c[i] = a[i] \\
& b[i] = a[i] \\
\text{end do}
\end{align*}
\]
Loop interchange

• Change the order of a nested loop

• This is not always legal – it changes the order that elements are accessed!

• Why is this useful?

• Consider matrix-matrix multiply when A is stored in column-major order (i.e., each column is stored in contiguous memory)

\[
\text{for } (i = 0; i < N; i++)
\]
\[
\text{for } (j = 0; j < N; j++)
\]
\[
y[i] += A[i][j] \times x[j]
\]
Loop interchange

- Change the order of a nested loop

- This is not always legal – it changes the order that elements are accessed!

- Why is this useful?

- Consider matrix-matrix multiply when A is stored in column-major order (i.e., each column is stored in contiguous memory)

```
for (j = 0; j < N; j++)
  for (i = 0; i < N; i++)
    y[i] += A[i][j] * x[j]
```
Loop tiling

- Also called “loop blocking”
- One of the more complex loop transformations
- Goal: break loop up into smaller pieces to get spatial and temporal locality
- Create new inner loops so that data accessed in inner loops fit in cache
- Also changes iteration order, so may not be legal

```c
for (i = 0; i < N; i++)
    for (j = 0; j < N; j++)
        y[i] += A[i][j] * x[j]

for (ii = 0; ii < N; ii += B)
    for (jj = 0; jj < N; jj += B)
        for (i = ii; i < ii+B; i++)
            for (j = jj; j < jj+B; j++)
                y[i] += A[i][j] * x[j]
```

Diagram:

```
  x
```

```
  y
  i

  A
```
Loop tiling

- Also called “loop blocking”
- One of the more complex loop transformations
- Goal: break loop up into smaller pieces to get spatial and temporal locality
- Create new inner loops so that data accessed in inner loops fit in cache
- Also changes iteration order, so may not be legal

```plaintext
for (i = 0; i < N; i++)
  for (j = 0; j < N; j++)
    y[i] += A[i][j] * x[j]

for (ii = 0; ii < N; ii += B)
  for (jj = 0; jj < N; jj += B)
    for (i = ii; i < ii+B; i++)
      for (j = jj; j < jj+B; j++)
        y[i] += A[i][j] * x[j]
```

```
\begin{tikzpicture}
  \node [draw, minimum size=1cm] (x) at (0,0) {X};
  \draw [->] (x) -- (1,0) node [midway, above] {j};
  \draw [->] (x) -- (0,1) node [midway, right] {i};
  \node [draw, minimum size=1cm, fill=blue!20] (a) at (1,1) {A};
  \node [draw, minimum size=1cm, fill=blue!20] (b) at (1,0) {B};
  \node [draw, minimum size=1cm, fill=blue!20] (c) at (0,1) {B};
\end{tikzpicture}
```
In a real (Itanium) compiler

GFLOPS relative to -O2; bigger is better

-01 -O2 + prefetch + interchange + unroll-jam + blocking = -O3 gcc -O4

92% of Peak Performance
Loop transformations

• Loop transformations can have dramatic effects on performance

• Doing this legally and automatically is very difficult!

• Researchers have developed techniques to determine legality of loop transformations and automatically transform the loop

• Techniques like unimodular transform framework and polyhedral framework

• These approaches will get covered in more detail in advanced compilers course