Control flow graphs and loop optimizations

Agenda
- Building control flow graphs
- Low level loop optimizations
 - Code motion
 - Strength reduction
 - Unrolling
- High level loop optimizations
 - Loop fusion
 - Loop interchange
 - Loop tiling

Moving beyond basic blocks
- Up until now, we have focused on single basic blocks
- What do we do if we want to consider larger units of computation
 - Whole procedures?
 - Whole program?
- Idea: capture control flow of a program
- How control transfers between basic blocks due to:
 - Conditionals
 - Loops

Representation
- Use standard three-address code
- Jump targets are labeled
- Also label beginning/end of functions
- Want to keep track of targets of jump statements
 - Any statement whose execution may immediately follow execution of jump statement
 - Explicit targets: targets mentioned in jump statement
 - Implicit targets: statements that follow conditional jump statements
 - The statement that gets executed if the branch is not taken

Running example
```plaintext
A = 4
\( t_1 = A \cdot B \)
repeat {
  \( t_2 = t_1/C \)
  if (\( t_2 \geq W \)) {
    \( M = t_1 \cdot k \)
    \( t_3 = M + I \)
  }
  \( H = I \)
  \( M = t_3 - H \)
} until (\( T_3 \geq 0 \))
```

Running example
```plaintext
1  A = 4
2  t1 = A * B
3  repeat {
4    t2 = t1 / C
5    if t2 < W goto L2
6    M = t1 * k
7    t3 = M + I
8  L2:  H = I
9    M = t3 - H
10 } until (T3 ≥ 0)
11  L3:  halt
```
Control flow graphs

- Divides statements into basic blocks
- Basic block: a maximal sequence of statements \(l_0, l_1, l_2, \ldots, l_n \) such that if \(l_i \) and \(l_{i+1} \) are two adjacent statements in this sequence, then
 - The execution of \(l_i \) is always immediately followed by the execution of \(l_{i+1} \)
 - The execution of \(l_{i+1} \) is always immediately preceded by the execution of \(l_i \)
- Edges between basic blocks represent potential flow of control

Constructing a CFG

- To construct a CFG where each node is a basic block
- Identify leaders: first statement of a basic block
- In program order, construct a block by appending subsequent statements up to, but not including, the next leader
- Identifying leaders
 - First statement in the program
 - Explicit target of any conditional or unconditional branch
 - Implicit target of any branch

Partitioning algorithm

- Input: set of statements, \(\text{stat}(i) \) = \(i \)th statement in input
- Output: set of leaders, set of basic blocks where \(\text{block}(x) \) is the set of statements in the block with leader \(x \)
- Algorithm

Running example

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(A = 4)</td>
</tr>
<tr>
<td>2</td>
<td>(t_1 = A \times B)</td>
</tr>
<tr>
<td>3</td>
<td>(L_1: t_2 = t_1 / C)</td>
</tr>
<tr>
<td>4</td>
<td>if (t_2 < W) goto (L_2)</td>
</tr>
<tr>
<td>5</td>
<td>(M = t_1 \times k)</td>
</tr>
<tr>
<td>6</td>
<td>(t_3 = M + I)</td>
</tr>
<tr>
<td>7</td>
<td>(L_2: H = I)</td>
</tr>
<tr>
<td>8</td>
<td>(M = t_3 - H)</td>
</tr>
<tr>
<td>9</td>
<td>if (t_3 \geq 0) goto (L_3)</td>
</tr>
<tr>
<td>10</td>
<td>goto (L_1)</td>
</tr>
<tr>
<td>11</td>
<td>(L_3: \text{halt})</td>
</tr>
</tbody>
</table>

Leaders = \(\{1, 3, 5, 7, 10, 11\} \)
Basic blocks = \(\{ \{1, 2\}, \{3, 4\}, \{5, 6\}, \{7, 8, 9\}, \{10\}, \{11\} \} \)
Putting edges in CFG

- There is a directed edge from B_1 to B_2 if
 - There is a branch from the last statement of B_1 to the first statement (leader) of B_2.
 - B_2 immediately follows B_1 in program order and B_1 does not end with an unconditional branch.

Input: block, a sequence of basic blocks
Output: The CFG

```
for i = 1 to |block|
  x = last statement of block(i)
  if stat(x) is a branch,
    for each explicit target y of stat(x)
      create edge from block i to block y
    end for
  if stat(x) is not unconditional
    create edge from block i to block i+1
  end if
end for
```

Friday, November 7, 14

Discussion

- Sometimes we will also consider the statement-level CFG, where each node is a statement rather than a basic block.
 - Either kind of graph is referred to as a CFG.
 - In statement-level CFG, we often use a node to explicitly represent merging of control.
 - Control merges when two different CFG nodes point to the same node.

Note: if input language is structured, front-end can generate basic block directly.
- “GOTO considered harmful”

Friday, November 7, 14

Loop optimization

- Low level optimization
 - Moving code around in a single loop.
 - Examples: loop invariant code motion, strength reduction, loop unrolling
 - High level optimization
 - Restructuring loops, often affects multiple loops.
 - Examples: loop fusion, loop interchange, loop tiling

Low level loop optimizations

- Affect a single loop.
 - Usually performed at three-address code stage or later in compiler.
 - First problem: identifying loops.
 - Low level representation doesn’t have loop statements!

Friday, November 7, 14
Identifying loops

- First, we must identify dominators
 - Node \(a \) dominates node \(b \) if every possible execution path that gets to \(b \) must pass through \(a \)
- Many different algorithms to calculate dominators – we will not cover how this is calculated
- A back edge is an edge from \(b \) to \(a \) when \(a \) dominates \(b \)
- The target of a back edge is a loop header

Natural loops

- Will focus on natural loops – loops that arise in structured programs
- For a node \(n \) to be in a loop with header \(h \)
 - \(n \) must be dominated by \(h \)
 - There must be a path in the CFG from \(n \) to \(h \) through a back-edge to \(h \)
- What are the back edges in the example to the right? The loop headers? The natural loops?

Loop invariant code motion

- Idea: some expressions evaluated in a loop never change; they are loop invariant
- Can move loop invariant expressions outside the loop, store result in temporary and just use the temporary in each iteration
- Why is this useful?

Identifying loop invariant code

- To determine if a statement
 \[s: a = b \text{ op } c \]
 is loop invariant, find all definitions of \(b \) and \(c \) that reach \(s \)
- A statement \(t \) defining \(b \) reaches \(s \) if there is a path from \(t \) to \(s \) where \(b \) is not re-defined
- \(s \) is loop invariant if both \(b \) and \(c \) satisfy one of the following
 - it is constant
 - all definitions that reach it are from outside the loop
 - only one definition reaches it and that definition is also loop invariant

Moving loop invariant code

- Just because code is loop invariant doesn’t mean we can move it!
 \[
 \begin{align*}
 \text{for (...)} & \quad \text{if (*)} \\
 a & = b + c \\
 \text{break} & \quad \text{if (*)} \\
 a & = 5 \\
 \text{else} & \quad a = 6 \\
 c & = a; \\
 \end{align*}
 \]
- We can move a loop invariant statement \(a = b \text{ op } c \) if
 - The statement dominates all loop exits where \(a \) is live
 - There is only one definition of \(a \) in the loop
 - \(a \) is not live before the loop
- Move instruction to a preheader, a new block put right before loop header

Strength reduction

- Like strength reduction peephole optimization
 \[
 \text{for (i = 0; i < 100; i++)} \\
 A[i] = 0;
 \]
- Peephole: replace expensive instruction like \(a = 2 \text{ with } a << 1 \)
- Replace expensive instruction, multiply, with a cheap one, addition
- Applies to uses of an induction variable
- Opportunity: array indexing
 \[
 \begin{align*}
 i & = 0; \\
 \text{L2: if } (i \geq 100) \text{ goto L1} \\
 j & = 4 * i + &A \\
 \text{*j} & = 0; \\
 i & = i + 1; \\
 \text{goto L2} \\
 \text{L1:}
 \end{align*}
 \]
Strength reduction

- Like strength reduction peephole optimization
- Peephole: replace expensive instruction like a * 2 with a \textless \textless 1
- Replace expensive instruction, multiply, with a cheap one, addition
- Applies to uses of an induction variable
- Opportunity: array indexing

```c
for (i = 0; i < 100; i++)
    A[i] = 0;
```

```
i = 0; k = &A;
L2:if (i >= 100) goto L1
    j = k;
    *j = 0;
    i = i + 1; k = k + 4;
goto L2
L1:
```

Induction variables

- A basic induction variable is a variable \(j \)
- whose only definition within the loop is an assignment of the form \(j = j \pm c \), where \(c \) is loop invariant
- Intuition: the variable which determines number of iterations is usually an induction variable
- A mutual induction variable \(i \) may be
 - defined once within the loop, and its value is a linear function of some other induction variable \(j \) such that
 \[i = c_1 \cdot j \pm c_2 \text{ or } i = j \div c_1 \pm c_2 \]
 where \(c_1, c_2 \) are loop invariant
- A family of induction variables include a basic induction variable and any related mutual induction variables

Strength reduction algorithm

- Let \(i \) be an induction variable in the family of the basic induction variable \(j \), such that \(i = c_1 \cdot j + c_2 \)
- Create a new variable \(i' \)
- Initialize in preheader
 \[i' = c_1 \cdot j + c_2 \]
- Track value of \(j \). After \(j = j + c_3 \), perform
 \[i' = i' + (c_1 \cdot c_3) \]
- Replace definition of \(i \) with \(i = i' \)
- Key: \(c_1, c_2, c_3 \) are all loop invariant (or constant), so computations like \((c_1 \cdot c_3) \) can be moved outside loop

Linear test replacement

- After strength reduction, the loop test may be the only use of the basic induction variable
- Can now eliminate induction variable altogether
- Algorithm
 - If only use of an induction variable is the loop test and its increment, and if the test is always computed
 - Can replace the test with an equivalent one using one of the mutual induction variables

```
i = 2
for (; i < k; i++)
    j = 50*i
    ...
    j
```

Loop unrolling

- Modifying induction variable in each iteration can be expensive
- Can instead unroll loops and perform multiple iterations for each increment of the induction variable
- What are the advantages and disadvantages?

```
for (i = 0; i < N; i++)
    A[i] = ...
```

```
for (i = 0; i < N; i += 4)
    A[i] = ...
    A[i+1] = ...
    A[i+2] = ...
    A[i+3] = ...
```

High level loop optimizations

- Many useful compiler optimizations require restructuring loops or sets of loops
- Combining two loops together (loop fusion)
- Switching the order of a nested loop (loop interchange)
- Completely changing the traversal order of a loop (loop tiling)
- These sorts of high level loop optimizations usually take place at the AST level (where loop structure is obvious)
Cache behavior

- Most loop transformations target cache performance
- Attempt to increase spatial or temporal locality
- Locality can be exploited when there is reuse of data (for temporal locality) or recent access of nearby data (for spatial locality)
- Loops are a good opportunity for this: many loops iterate through matrices or arrays
- Consider matrix-vector multiply example
- Multiple traversals of vector: opportunity for spatial and temporal locality
- Regular access to array: opportunity for spatial locality

\[y = Ax \]

Loop fusion

- Combine two loops together into a single loop
- Why is this useful?
- Is this always legal?

Loop interchange

- Change the order of a nested loop
- This is not always legal – it changes the order that elements are accessed!
- Why is this useful?
 - Consider matrix-matrix multiply when A is stored in column-major order (i.e., each column is stored in contiguous memory)

For \(i = 0; i < N; i++ \)
For \(j = 0; j < N; j++ \)
\[y[i] \leftarrow A[i][j] \times j \]

Loop tiling

- Also called “loop blocking”
- One of the more complex loop transformations
- Goal: break loop up into smaller pieces to get spatial and temporal locality
- Create new inner loops so that data accessed in inner loops fit in cache
- Also changes iteration order, so may not be legal

For \(i = 0; i < N; i++ \)
For \(j = 0; j < N; j++ \)
\[y[i] \leftarrow A[i][j] \times j \]
In a real (Itanium) compiler

<table>
<thead>
<tr>
<th>Modifier</th>
<th>GFLOPS relative to -O2; bigger is better</th>
</tr>
</thead>
<tbody>
<tr>
<td>-O1</td>
<td>0</td>
</tr>
<tr>
<td>-O2</td>
<td>7.5</td>
</tr>
<tr>
<td>+ prefetch</td>
<td>15.0</td>
</tr>
<tr>
<td>+ interchange</td>
<td>22.5</td>
</tr>
<tr>
<td>+ unroll-jam</td>
<td>30.0</td>
</tr>
<tr>
<td>gcc -O3</td>
<td>92% of Peak Performance</td>
</tr>
</tbody>
</table>

Loop transformations

- Loop transformations can have dramatic effects on performance
- Doing this legally and automatically is very difficult!
- Researchers have developed techniques to determine legality of loop transformations and automatically transform the loop
 - Techniques like unimodular transform framework and polyhedral framework
 - These approaches will get covered in more detail in advanced compilers course