
Code generation and 
local optimization
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Generating assembly

• How do we convert from three-address code to assembly?

• Seems easy! But easy solutions may not be the best 
option

• What we will cover:

• Instruction selection

• Peephole optimizations

• “Local” common subexpression elimination

• “Local” register allocation
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Naïve approach
• “Macro-expansion”

• Treat each 3AC instruction separately, generate code in 
isolation

ADD A, B, C

LD A, R1
LD B, R2
ADD R1, R2, R3
ST R3, C

MUL A, 4, B

LD A, R1
MOV 4, R2
MUL R1, R2, R3
ST R3, B
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Why is this bad? (I)

MUL A, 4, B

LD A, R1
MOV 4, R2
MUL R1, R2, R3
ST R3, B
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Why is this bad? (I)

MUL A, 4, B

LD A, R1
MOV 4, R2
MUL R1, R2, R3
ST R3, B

Too many instructions
Should use a different instruction type
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Why is this bad? (I)

MUL A, 4, B

LD A, R1
MOV 4, R2
MUL R1, R2, R3
ST R3, B

Too many instructions
Should use a different instruction type

MUL A, 4, B
LD A, R1
MULI R1, 4, R3
ST R3, B
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Why is this bad? (II)

ADD A, B, C

LD A, R1
LD B, R2
ADD R1, R2, R3
ST R3, C

ADD A, B, C
ADD C, A, E

LD A, R1
LD B, R2
ADD R1, R2, R3
ST R3, C
LD C, R4
LD A, R5
ADD R4, R5, R6
ST R6, E
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Why is this bad? (II)

ADD A, B, C

LD A, R1
LD B, R2
ADD R1, R2, R3
ST R3, C

ADD A, B, C
ADD C, A, E

LD A, R1
LD B, R2
ADD R1, R2, R3
ST R3, C
LD C, R4
LD A, R5
ADD R4, R5, R6
ST R6, E

Redundant load of C
Redundant load of A

Uses a lot of registers
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Why is this bad? (II)

ADD A, B, C

LD A, R1
LD B, R2
ADD R1, R2, R3
ST R3, C

ADD A, B, C
ADD C, A, E

LD A, R1
LD B, R2
ADD R1, R2, R3
ST R3, C
LD C, R4
LD A, R5
ADD R4, R5, R6
ST R6, E

Redundant load of C
Redundant load of A

Uses a lot of registers
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Why is this bad? (III)

ADD A, B, C

LD A, R1
LD B, R2
ADD R1, R2, R3
ST R3, C

ADD A, B, C
ADD A, B, D

LD A, R1
LD B, R2
ADD R1, R2, R3
ST R3, C
LD A, R4
LD B, R5
ADD R4, R5, R6
ST R6, D
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Why is this bad? (III)

ADD A, B, C

LD A, R1
LD B, R2
ADD R1, R2, R3
ST R3, C

ADD A, B, C
ADD A, B, D

LD A, R1
LD B, R2
ADD R1, R2, R3
ST R3, C
LD A, R4
LD B, R5
ADD R4, R5, R6
ST R6, DWasting instructions recomputing A + B
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How do we address this?

• Several techniques to improve performance of generated 
code

• Instruction selection to choose better instructions

• Peephole optimizations to remove redundant instructions

• Common subexpression elimination to remove redundant 
computation

• Register allocation to reduce number of registers used
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Instruction selection
• Even a simple instruction may have a large set of possible 

address modes and combinations

• Dozens of potential combinations!

+ A B C

• Can be indirect, register, memory 
address, indexed, etc.

• Can be literal, register, memory 
address, indexed, etc.

• Can be literal, register, memory 
address, indexed, etc.
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More choices for instructions

• Auto increment/decrement (especially common in 
embedded processors as in DSPs)

• e.g., load from this address and increment it

• Why is this useful?

• Three-address instructions

• Specialized registers (condition registers, floating point 
registers, etc.)

• “Free” addition in indexed mode

MOV (R1)offset R2

• Why is this useful? 
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Peephole optimizations

• Simple optimizations that can be performed by pattern 
matching

• Intuitively, look through a “peephole” at a small segment 
of code and replace it with something better

• Example: if code generator sees ST R X; LD X R, 
eliminate load

• Can recognize sequences of instructions that can be 
performed by single instructions

LDI R1 R2; ADD R1 4 R1 replaced by

LDINC R1 R2 4 //load from address in R1 then inc by 4

Wednesday, October 22, 14

Peephole optimizations
• Constant folding

• Strength reduction

• Null sequences

ADD lit1, lit2, Rx MOV lit1 + lit2, Rx
MOV lit1, Rx
ADD li2, Rx, Ry MOV lit1 + lit2, Ry

MUL operand, 2, Rx SHIFTL operand, 1, Rx

DIV operand, 4, Rx SHIFTR operand, 2, Rx

MUL operand, 1, Rx MOV operand, Rx

ADD operand, 0, Rx MOV operand, Rx
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Peephole optimizations
• Combine operations

• Simplifying

• Special cases (taking advantage of ++/--)

• Address mode operations

JEQ L1
JMP L2
L1: ...

JNE L2

SUB operand, 0, Rx NEG Rx

ADD 1, Rx, Rx INC Rx
SUB Rx, 1, Rx DEC Rx

MOV A R1
ADD 0(R1) R2 R3 ADD @A R2 R3
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Superoptimization

• Peephole optimization/instruction selection writ large

• Given a sequence of instructions, find a different sequence 
of instructions that performs the same computation in less 
time

• Huge body of research, pulling in ideas from all across 
computer science

• Theorem proving

• Machine learning
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Common subexpression 
elimination

• Goal: remove redundant computation, don’t calculate the 
same expression multiple times

• Difficulty: how do we know when the same expression will 
produce the same result?

• This becomes harder with pointers (how do we know 
when B is killed?)

1: A = B * C

2: E = B * C
Keep the result of statement 1 in a 
temporary and reuse for statement 2

1: A = B * C

3: E = B * C

2: B = <new value>

B is “killed.” Any expression using B is 
no longer “available,” so we cannot 
reuse the result of statement 1 for 
statement 3
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Common subexpression 
elimination

• Two varieties of common subexpression elimination (CSE)

• Local: within a single basic block

• Easier problem to solve (why?)

• Global: within a single procedure or across the whole 
program

• Intra- vs. inter-procedural

• More powerful, but harder (why?)

• Will come back to these sorts of “global” optimizations 
later
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CSE in practice

• Idea: keep track of which expressions are “available” during 
the execution of a basic block

• Which expressions have we already computed?

• Issue: determining when an expression is no longer 
available

• This happens when one of its components is 
assigned to, or “killed.”

• Idea: when we see an expression that is already available, 
rather than generating code, copy the temporary

• Issue: determining when two expressions are the same
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Maintaining available expressions
• For each 3AC operation in a basic block

• Create name for expression (based on lexical 
representation)

• If name not in available expression set, generate code, 
add it to set

• Track register that holds result of and any variables 
used to compute expression

• If name in available expression set, generate move 
instruction

• If operation assigns to a variable, kill all dependent 
expressions
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Example

+ A B T1
+ T1 C T2
+ A B T3
+ T1 T2 C
+ T1 C T4
+ T3 T2 D

Available expressions: 

Three address code Generated code
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Example

+ A B T1
+ T1 C T2
+ A B T3
+ T1 T2 C
+ T1 C T4
+ T3 T2 D

Available expressions: “A+B”

Three address code Generated code

ADD A B R1
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Example

+ A B T1
+ T1 C T2
+ A B T3
+ T1 T2 C
+ T1 C T4
+ T3 T2 D

Available expressions: “A+B” “T1+C”

Three address code Generated code

ADD A B R1
ADD R1 C R2
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Example

+ A B T1
+ T1 C T2
+ A B T3
+ T1 T2 C
+ T1 C T4
+ T3 T2 D

Available expressions: “A+B” “T1+C”

Three address code Generated code

ADD A B R1
ADD R1 C R2
MOV R1 R3
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Example

+ A B T1
+ T1 C T2
+ A B T3
+ T1 T2 C
+ T1 C T4
+ T3 T2 D

Available expressions: “A+B” “T1+C” “T1+T2”

Three address code Generated code

ADD A B R1
ADD R1 C R2
MOV R1 R3
ADD R1 R2 R5; ST R5 C
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Example

+ A B T1
+ T1 C T2
+ A B T3
+ T1 T2 C
+ T1 C T4
+ T3 T2 D

Available expressions: “A+B” “T1+T2” “T1+C”

Three address code Generated code

ADD A B R1
ADD R1 C R2
MOV R1 R3
ADD R1 R2 R5; ST R5 C
ADD R1 C R4
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Example

+ A B T1
+ T1 C T2
+ A B T3
+ T1 T2 C
+ T1 C T4
+ T3 T2 D

Available expressions: “A+B” “T1+T2” “T1+C” “T3+T2”

Three address code Generated code

ADD A B R1
ADD R1 C R2
MOV R1 R3
ADD R1 R2 R5; ST R5 C
ADD R1 C R4
ADD R3 R2 R6; ST R6 D
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• What are some downsides to this approach? Consider the 
two highlighted operations

Downsides

+ A B T1
+ T1 C T2
+ A B T3
+ T1 T2 C
+ T1 C T4
+ T3 T2 D

Three address code Generated code

ADD A B R1
ADD R1 C R2
MOV R1 R3
ADD R1 R2 R5; ST R5 C
ADD R1 C R4
ADD R3 R2 R6; ST R6 D
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• What are some downsides to this approach? Consider the 
two highlighted operations

• This can be handled by an optimization called value 
numbering, which we will not cover now (although we may 
get to it later)

Downsides

+ A B T1
+ T1 C T2
+ A B T3
+ T1 T2 C
+ T1 C T4
+ T3 T2 D

Three address code Generated code

ADD A B R1
ADD R1 C R2
MOV R1 R3
ADD R1 R2 R5; ST R5 C
ADD R1 C R4
ST R5 D
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Aliasing
• One of the biggest problems in compiler analysis is to 

recognize aliases – different names for the same location in 
memory

• Aliases can occur for many reasons

• Pointers referring to same location, arrays referencing the 
same element, function calls passing the same reference 
in two arguments, explicit storage overlapping (unions)

• Upshot: when talking about “live” and “killed” values in 
optimizations like CSE, we’re talking about particular 
variable names

• In the presence of aliasing, we may not know which variables 
get killed when a location is written to

Wednesday, October 22, 14

Memory disambiguation

• Most compiler analyses rely on memory disambiguation

• Otherwise, they need to be too conservative and are 
not useful

• Memory disambiguation is the problem of determining 
whether two references point to the same memory 
location

• Points-to and alias analyses try to solve this

• Will cover basic pointer analyses in a later lecture
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Register allocation
• Simple code generation: use a register for each temporary, load from 

a variable on each read, store to a variable at each write

• Problems

• Real machines have a limited number of registers – one register 
per temporary may be too many

• Loading from and storing to variables on each use may produce a 
lot of redundant loads and stores

• Goal: allocate temporaries and variables to registers to:

• Use only as many registers as machine supports

• Minimize loading and storing variables to memory (keep variables 
in registers when possible)

• Minimize putting temporaries on stack
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Global vs. local

• Same distinction as global vs. local CSE

• Local register allocation is for a single basic block

• Global register allocation is for an entire function (but 
not interprocedural – why?)

• Will cover some local allocation strategies now, global 
allocation later
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Top-down register allocation

• For each basic block

• Find the number of references of each variable

• Assign registers to variables with the most references

• Details

• Keep some registers free for operations on unassigned 
variables and spilling

• Store dirty registers at the end of BB (i.e., registers which 
have variables assigned to them)

• Do not need to do this for temporaries (why?)
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Bottom-up register allocation
• Smarter approach:

• Free registers once the data in them isn’t used anymore

• Requires calculating liveness

• A variable is live if it has a value that may be used in the future

• Easy to calculate if you have a single basic block:

• Start at end of block, all local variables marked dead

• If you have multiple basic blocks, all local variables should be live 
(they may be used in the future)

• When a variable is used, mark as live, record use

• When a variable is defined, record def, variable dead above this

• Creates chains linking uses of variables to where they were defined

• We will discuss how to calculate this across BBs later

Wednesday, October 22, 14

Liveness example
• What is live in this code?

1:  A = B + C
2:  C = A + B
3:  T1 = B + C
4:  T2 = T1 + C
5:  D = T2
6:  E = A + B
7:  B = E + D
8:  A = C + D
9:  T3 = A + B
10: WRITE(T3)
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Liveness example
• What is live in this code?

1:  A = B + C
2:  C = A + B
3:  T1 = B + C
4:  T2 = T1 + C
5:  D = T2
6:  E = A + B
7:  B = E + D
8:  A = C + D
9:  T3 = A + B
10: WRITE(T3)

1:  {A, B}
2:  {A, B, C}
3:  {A, B, C, T1}
4:  {A, B, C, T2}
5:  {A, B, C, D}
6:  {C, D, E}
7:  {B, C, D}
8:  {A, B}
9:  {T3}
10: {}
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• We will present this as if A, B, C are variables in memory. 
Can be modified to assume that A, B and C are in virtual 
registers, instead

Bottom-up register allocation
For each tuple op A B C in a BB, do

Rx = ensure(A)
Ry = ensure(B)
if A dead after this tuple, free(Rx)
if B dead after this tuple, free(Ry)
Rz = allocate(C) //could use Rx or Ry

generate code for op
mark Rz dirty

At end of BB, for each dirty register
generate code to store register into appropriate variable
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Bottom-up register allocation
ensure(opr)

if opr is already in register r
return r

else
r = allocate(opr)
generate load from opr into r
return r

free(r)
if r is marked dirty and variable is live

generate store
mark r as free

allocate(opr)
if there is a free r

choose r
else

choose r with most distant use
free(r)

mark r associated with opr
return r

Wednesday, October 22, 14

Example
• Perform register allocation for this code:

1:  A = B + C
2:  C = A + B
3:  T1 = B + C
4:  T2 = T1 + C
5:  D = T2
6:  E = A + B
7:  B = E + D
8:  A = C + D
9:  T3 = A + B
10: WRITE(T3)
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Example

Inst R1 R2 R3

1

2

3

4

5

6

7

8

9

10

1:  A = B + C
2:  C = A + B
3:  T1 = B + C
4:  T2 = T1 + C
5:  D = T2
6:  E = A + B
7:  B = E + D
8:  A = C + D
9:  T3 = A + B
10: WRITE(T3)

1:  {A, B}
2:  {A, B, C}
3:  {A, B, C, T1}
4:  {A, B, C, T2}
5:  {A, B, C, D}
6:  {C, D, E}
7:  {B, C, D}
8:  {A, B}
9:  {T3}
10: {}
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Example

Inst R1 R2 R3

1 B A

2 B C A

3 B C T1

4 B C T2

5 B C D

6 E D

7 B D

8 B A

9 T3

10 F

1:  A = B + C
2:  C = A + B
3:  T1 = B + C
4:  T2 = T1 + C
5:  D = T2
6:  E = A + B
7:  B = E + D
8:  A = C + D
9:  T3 = A + B
10: WRITE(T3)

1:  {A, B}
2:  {A, B, C}
3:  {A, B, C, T1}
4:  {A, B, C, T2}
5:  {A, B, C, D}
6:  {C, D, E}
7:  {B, C, D}
8:  {A, B}
9:  {T3}
10: {}
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Aliasing, as usual, is a problem

• What happens with this code?

//a and b are aliased

LD a R1

LD b R2

ADD R1 R2 R3

ST R3 c // c = a + b

R1 = 7 //a = 7

ADD R1 R2 R4

ST R4 d // d = a + b
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Dealing with aliasing

• Immediately before loading a variable x

• For each variable aliased to x that is already in a dirty register, save it 
to memory (i.e., perform a store)

• This ensures that we load the right value

• Immediately before writing to a register holding x

• For each register associated with a variable aliased to x, mark it as 
invalid

• So next time we use the variable, we will reload it

• Conservative approach: assume all variables are aliased (in other words, 
reload from memory on each read, store to memory on each write)

• Better alias analysis can improve this

• At subroutine boundaries, still often use conservative analysis
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Allocation considerations

• Use register coloring to perform global register allocation

• Will see this next

• Find right order of optimizations and register allocation

• Peephole optimizations can reduce register pressure, can 
make allocation better

• CSE can actually increase register pressure

• Different orders of optimization produce different results

• Register allocation still an open research area

• For example, how to do allocation for JIT compilers
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