
Code generation and
local optimization

Wednesday, October 22, 14

Generating assembly

• How do we convert from three-address code to assembly?

• Seems easy! But easy solutions may not be the best
option

• What we will cover:

• Instruction selection

• Peephole optimizations

• “Local” common subexpression elimination

• “Local” register allocation

Wednesday, October 22, 14

Naïve approach
• “Macro-expansion”

• Treat each 3AC instruction separately, generate code in
isolation

ADD A, B, C

LD A, R1
LD B, R2
ADD R1, R2, R3
ST R3, C

MUL A, 4, B

LD A, R1
MOV 4, R2
MUL R1, R2, R3
ST R3, B

Wednesday, October 22, 14

Why is this bad? (I)

MUL A, 4, B

LD A, R1
MOV 4, R2
MUL R1, R2, R3
ST R3, B

Wednesday, October 22, 14

Why is this bad? (I)

MUL A, 4, B

LD A, R1
MOV 4, R2
MUL R1, R2, R3
ST R3, B

Too many instructions
Should use a different instruction type

Wednesday, October 22, 14

Why is this bad? (I)

MUL A, 4, B

LD A, R1
MOV 4, R2
MUL R1, R2, R3
ST R3, B

Too many instructions
Should use a different instruction type

MUL A, 4, B
LD A, R1
MULI R1, 4, R3
ST R3, B

Wednesday, October 22, 14

Why is this bad? (II)

ADD A, B, C

LD A, R1
LD B, R2
ADD R1, R2, R3
ST R3, C

ADD A, B, C
ADD C, A, E

LD A, R1
LD B, R2
ADD R1, R2, R3
ST R3, C
LD C, R4
LD A, R5
ADD R4, R5, R6
ST R6, E

Wednesday, October 22, 14

Why is this bad? (II)

ADD A, B, C

LD A, R1
LD B, R2
ADD R1, R2, R3
ST R3, C

ADD A, B, C
ADD C, A, E

LD A, R1
LD B, R2
ADD R1, R2, R3
ST R3, C
LD C, R4
LD A, R5
ADD R4, R5, R6
ST R6, E

Redundant load of C
Redundant load of A

Uses a lot of registers

Wednesday, October 22, 14

Why is this bad? (II)

ADD A, B, C

LD A, R1
LD B, R2
ADD R1, R2, R3
ST R3, C

ADD A, B, C
ADD C, A, E

LD A, R1
LD B, R2
ADD R1, R2, R3
ST R3, C
LD C, R4
LD A, R5
ADD R4, R5, R6
ST R6, E

Redundant load of C
Redundant load of A

Uses a lot of registers

Wednesday, October 22, 14

Why is this bad? (III)

ADD A, B, C

LD A, R1
LD B, R2
ADD R1, R2, R3
ST R3, C

ADD A, B, C
ADD A, B, D

LD A, R1
LD B, R2
ADD R1, R2, R3
ST R3, C
LD A, R4
LD B, R5
ADD R4, R5, R6
ST R6, D

Wednesday, October 22, 14

Why is this bad? (III)

ADD A, B, C

LD A, R1
LD B, R2
ADD R1, R2, R3
ST R3, C

ADD A, B, C
ADD A, B, D

LD A, R1
LD B, R2
ADD R1, R2, R3
ST R3, C
LD A, R4
LD B, R5
ADD R4, R5, R6
ST R6, DWasting instructions recomputing A + B

Wednesday, October 22, 14

How do we address this?

• Several techniques to improve performance of generated
code

• Instruction selection to choose better instructions

• Peephole optimizations to remove redundant instructions

• Common subexpression elimination to remove redundant
computation

• Register allocation to reduce number of registers used

Wednesday, October 22, 14

Instruction selection
• Even a simple instruction may have a large set of possible

address modes and combinations

• Dozens of potential combinations!

+ A B C

• Can be indirect, register, memory
address, indexed, etc.

• Can be literal, register, memory
address, indexed, etc.

• Can be literal, register, memory
address, indexed, etc.

Wednesday, October 22, 14

More choices for instructions

• Auto increment/decrement (especially common in
embedded processors as in DSPs)

• e.g., load from this address and increment it

• Why is this useful?

• Three-address instructions

• Specialized registers (condition registers, floating point
registers, etc.)

• “Free” addition in indexed mode

MOV (R1)offset R2

• Why is this useful?

Wednesday, October 22, 14

Peephole optimizations

• Simple optimizations that can be performed by pattern
matching

• Intuitively, look through a “peephole” at a small segment
of code and replace it with something better

• Example: if code generator sees ST R X; LD X R,
eliminate load

• Can recognize sequences of instructions that can be
performed by single instructions

LDI R1 R2; ADD R1 4 R1 replaced by

LDINC R1 R2 4 //load from address in R1 then inc by 4

Wednesday, October 22, 14

Peephole optimizations
• Constant folding

• Strength reduction

• Null sequences

ADD lit1, lit2, Rx MOV lit1 + lit2, Rx
MOV lit1, Rx
ADD li2, Rx, Ry MOV lit1 + lit2, Ry

MUL operand, 2, Rx SHIFTL operand, 1, Rx

DIV operand, 4, Rx SHIFTR operand, 2, Rx

MUL operand, 1, Rx MOV operand, Rx

ADD operand, 0, Rx MOV operand, Rx

Wednesday, October 22, 14

Peephole optimizations
• Combine operations

• Simplifying

• Special cases (taking advantage of ++/--)

• Address mode operations

JEQ L1
JMP L2
L1: ...

JNE L2

SUB operand, 0, Rx NEG Rx

ADD 1, Rx, Rx INC Rx
SUB Rx, 1, Rx DEC Rx

MOV A R1
ADD 0(R1) R2 R3 ADD @A R2 R3

Wednesday, October 22, 14

Superoptimization

• Peephole optimization/instruction selection writ large

• Given a sequence of instructions, find a different sequence
of instructions that performs the same computation in less
time

• Huge body of research, pulling in ideas from all across
computer science

• Theorem proving

• Machine learning

Wednesday, October 22, 14

Common subexpression
elimination

• Goal: remove redundant computation, don’t calculate the
same expression multiple times

• Difficulty: how do we know when the same expression will
produce the same result?

• This becomes harder with pointers (how do we know
when B is killed?)

1: A = B * C

2: E = B * C
Keep the result of statement 1 in a
temporary and reuse for statement 2

1: A = B * C

3: E = B * C

2: B = <new value>

B is “killed.” Any expression using B is
no longer “available,” so we cannot
reuse the result of statement 1 for
statement 3

Wednesday, October 22, 14

Common subexpression
elimination

• Two varieties of common subexpression elimination (CSE)

• Local: within a single basic block

• Easier problem to solve (why?)

• Global: within a single procedure or across the whole
program

• Intra- vs. inter-procedural

• More powerful, but harder (why?)

• Will come back to these sorts of “global” optimizations
later

Wednesday, October 22, 14

CSE in practice

• Idea: keep track of which expressions are “available” during
the execution of a basic block

• Which expressions have we already computed?

• Issue: determining when an expression is no longer
available

• This happens when one of its components is
assigned to, or “killed.”

• Idea: when we see an expression that is already available,
rather than generating code, copy the temporary

• Issue: determining when two expressions are the same

Wednesday, October 22, 14

Maintaining available expressions
• For each 3AC operation in a basic block

• Create name for expression (based on lexical
representation)

• If name not in available expression set, generate code,
add it to set

• Track register that holds result of and any variables
used to compute expression

• If name in available expression set, generate move
instruction

• If operation assigns to a variable, kill all dependent
expressions

Wednesday, October 22, 14

Example

+ A B T1
+ T1 C T2
+ A B T3
+ T1 T2 C
+ T1 C T4
+ T3 T2 D

Available expressions:

Three address code Generated code

Wednesday, October 22, 14

Example

+ A B T1
+ T1 C T2
+ A B T3
+ T1 T2 C
+ T1 C T4
+ T3 T2 D

Available expressions: “A+B”

Three address code Generated code

ADD A B R1

Wednesday, October 22, 14

Example

+ A B T1
+ T1 C T2
+ A B T3
+ T1 T2 C
+ T1 C T4
+ T3 T2 D

Available expressions: “A+B” “T1+C”

Three address code Generated code

ADD A B R1
ADD R1 C R2

Wednesday, October 22, 14

Example

+ A B T1
+ T1 C T2
+ A B T3
+ T1 T2 C
+ T1 C T4
+ T3 T2 D

Available expressions: “A+B” “T1+C”

Three address code Generated code

ADD A B R1
ADD R1 C R2
MOV R1 R3

Wednesday, October 22, 14

Example

+ A B T1
+ T1 C T2
+ A B T3
+ T1 T2 C
+ T1 C T4
+ T3 T2 D

Available expressions: “A+B” “T1+C” “T1+T2”

Three address code Generated code

ADD A B R1
ADD R1 C R2
MOV R1 R3
ADD R1 R2 R5; ST R5 C

Wednesday, October 22, 14

Example

+ A B T1
+ T1 C T2
+ A B T3
+ T1 T2 C
+ T1 C T4
+ T3 T2 D

Available expressions: “A+B” “T1+T2” “T1+C”

Three address code Generated code

ADD A B R1
ADD R1 C R2
MOV R1 R3
ADD R1 R2 R5; ST R5 C
ADD R1 C R4

Wednesday, October 22, 14

Example

+ A B T1
+ T1 C T2
+ A B T3
+ T1 T2 C
+ T1 C T4
+ T3 T2 D

Available expressions: “A+B” “T1+T2” “T1+C” “T3+T2”

Three address code Generated code

ADD A B R1
ADD R1 C R2
MOV R1 R3
ADD R1 R2 R5; ST R5 C
ADD R1 C R4
ADD R3 R2 R6; ST R6 D

Wednesday, October 22, 14

• What are some downsides to this approach? Consider the
two highlighted operations

Downsides

+ A B T1
+ T1 C T2
+ A B T3
+ T1 T2 C
+ T1 C T4
+ T3 T2 D

Three address code Generated code

ADD A B R1
ADD R1 C R2
MOV R1 R3
ADD R1 R2 R5; ST R5 C
ADD R1 C R4
ADD R3 R2 R6; ST R6 D

Wednesday, October 22, 14

• What are some downsides to this approach? Consider the
two highlighted operations

• This can be handled by an optimization called value
numbering, which we will not cover now (although we may
get to it later)

Downsides

+ A B T1
+ T1 C T2
+ A B T3
+ T1 T2 C
+ T1 C T4
+ T3 T2 D

Three address code Generated code

ADD A B R1
ADD R1 C R2
MOV R1 R3
ADD R1 R2 R5; ST R5 C
ADD R1 C R4
ST R5 D

Wednesday, October 22, 14

Aliasing
• One of the biggest problems in compiler analysis is to

recognize aliases – different names for the same location in
memory

• Aliases can occur for many reasons

• Pointers referring to same location, arrays referencing the
same element, function calls passing the same reference
in two arguments, explicit storage overlapping (unions)

• Upshot: when talking about “live” and “killed” values in
optimizations like CSE, we’re talking about particular
variable names

• In the presence of aliasing, we may not know which variables
get killed when a location is written to

Wednesday, October 22, 14

Memory disambiguation

• Most compiler analyses rely on memory disambiguation

• Otherwise, they need to be too conservative and are
not useful

• Memory disambiguation is the problem of determining
whether two references point to the same memory
location

• Points-to and alias analyses try to solve this

• Will cover basic pointer analyses in a later lecture

Wednesday, October 22, 14

Register allocation
• Simple code generation: use a register for each temporary, load from

a variable on each read, store to a variable at each write

• Problems

• Real machines have a limited number of registers – one register
per temporary may be too many

• Loading from and storing to variables on each use may produce a
lot of redundant loads and stores

• Goal: allocate temporaries and variables to registers to:

• Use only as many registers as machine supports

• Minimize loading and storing variables to memory (keep variables
in registers when possible)

• Minimize putting temporaries on stack

Wednesday, October 22, 14

Global vs. local

• Same distinction as global vs. local CSE

• Local register allocation is for a single basic block

• Global register allocation is for an entire function (but
not interprocedural – why?)

• Will cover some local allocation strategies now, global
allocation later

Wednesday, October 22, 14

Top-down register allocation

• For each basic block

• Find the number of references of each variable

• Assign registers to variables with the most references

• Details

• Keep some registers free for operations on unassigned
variables and spilling

• Store dirty registers at the end of BB (i.e., registers which
have variables assigned to them)

• Do not need to do this for temporaries (why?)

Wednesday, October 22, 14

Bottom-up register allocation
• Smarter approach:

• Free registers once the data in them isn’t used anymore

• Requires calculating liveness

• A variable is live if it has a value that may be used in the future

• Easy to calculate if you have a single basic block:

• Start at end of block, all local variables marked dead

• If you have multiple basic blocks, all local variables should be live
(they may be used in the future)

• When a variable is used, mark as live, record use

• When a variable is defined, record def, variable dead above this

• Creates chains linking uses of variables to where they were defined

• We will discuss how to calculate this across BBs later

Wednesday, October 22, 14

Liveness example
• What is live in this code?

1: A = B + C
2: C = A + B
3: T1 = B + C
4: T2 = T1 + C
5: D = T2
6: E = A + B
7: B = E + D
8: A = C + D
9: T3 = A + B
10: WRITE(T3)

Wednesday, October 22, 14

Liveness example
• What is live in this code?

1: A = B + C
2: C = A + B
3: T1 = B + C
4: T2 = T1 + C
5: D = T2
6: E = A + B
7: B = E + D
8: A = C + D
9: T3 = A + B
10: WRITE(T3)

1: {A, B}
2: {A, B, C}
3: {A, B, C, T1}
4: {A, B, C, T2}
5: {A, B, C, D}
6: {C, D, E}
7: {B, C, D}
8: {A, B}
9: {T3}
10: {}

Wednesday, October 22, 14

• We will present this as if A, B, C are variables in memory.
Can be modified to assume that A, B and C are in virtual
registers, instead

Bottom-up register allocation
For each tuple op A B C in a BB, do

Rx = ensure(A)
Ry = ensure(B)
if A dead after this tuple, free(Rx)
if B dead after this tuple, free(Ry)
Rz = allocate(C) //could use Rx or Ry

generate code for op
mark Rz dirty

At end of BB, for each dirty register
generate code to store register into appropriate variable

Wednesday, October 22, 14

Bottom-up register allocation
ensure(opr)

if opr is already in register r
return r

else
r = allocate(opr)
generate load from opr into r
return r

free(r)
if r is marked dirty and variable is live

generate store
mark r as free

allocate(opr)
if there is a free r

choose r
else

choose r with most distant use
free(r)

mark r associated with opr
return r

Wednesday, October 22, 14

Example
• Perform register allocation for this code:

1: A = B + C
2: C = A + B
3: T1 = B + C
4: T2 = T1 + C
5: D = T2
6: E = A + B
7: B = E + D
8: A = C + D
9: T3 = A + B
10: WRITE(T3)

Wednesday, October 22, 14

Example

Inst R1 R2 R3

1

2

3

4

5

6

7

8

9

10

1: A = B + C
2: C = A + B
3: T1 = B + C
4: T2 = T1 + C
5: D = T2
6: E = A + B
7: B = E + D
8: A = C + D
9: T3 = A + B
10: WRITE(T3)

1: {A, B}
2: {A, B, C}
3: {A, B, C, T1}
4: {A, B, C, T2}
5: {A, B, C, D}
6: {C, D, E}
7: {B, C, D}
8: {A, B}
9: {T3}
10: {}

Wednesday, October 22, 14

Example

Inst R1 R2 R3

1 B A

2 B C A

3 B C T1

4 B C T2

5 B C D

6 E D

7 B D

8 B A

9 T3

10 F

1: A = B + C
2: C = A + B
3: T1 = B + C
4: T2 = T1 + C
5: D = T2
6: E = A + B
7: B = E + D
8: A = C + D
9: T3 = A + B
10: WRITE(T3)

1: {A, B}
2: {A, B, C}
3: {A, B, C, T1}
4: {A, B, C, T2}
5: {A, B, C, D}
6: {C, D, E}
7: {B, C, D}
8: {A, B}
9: {T3}
10: {}

Wednesday, October 22, 14

Aliasing, as usual, is a problem

• What happens with this code?

//a and b are aliased

LD a R1

LD b R2

ADD R1 R2 R3

ST R3 c // c = a + b

R1 = 7 //a = 7

ADD R1 R2 R4

ST R4 d // d = a + b

Wednesday, October 22, 14

Dealing with aliasing

• Immediately before loading a variable x

• For each variable aliased to x that is already in a dirty register, save it
to memory (i.e., perform a store)

• This ensures that we load the right value

• Immediately before writing to a register holding x

• For each register associated with a variable aliased to x, mark it as
invalid

• So next time we use the variable, we will reload it

• Conservative approach: assume all variables are aliased (in other words,
reload from memory on each read, store to memory on each write)

• Better alias analysis can improve this

• At subroutine boundaries, still often use conservative analysis

Wednesday, October 22, 14

Allocation considerations

• Use register coloring to perform global register allocation

• Will see this next

• Find right order of optimizations and register allocation

• Peephole optimizations can reduce register pressure, can
make allocation better

• CSE can actually increase register pressure

• Different orders of optimization produce different results

• Register allocation still an open research area

• For example, how to do allocation for JIT compilers

Wednesday, October 22, 14

