Scanners

® Sometimes called lexers
® Recall: scanners break input stream up into a set of tokens
Sca n n e rs ® |dentifiers, reserved words, literals, etc.
® What do we need to know?
® How do we define tokens?
® How can we recognize tokens?

® How do we write scanners?

Wednesday, September 3, 14 Wednesday, September 3, 14

Regular expressions Examples of regular expressions

® Regular sets: set of strings defined by regular expressions
® Strings are regular sets (with one element): purdue 3.14159
® Sois the empty string: \ (sometimes use € instead) b DigitS: D= [0'9]
e Concatentations of regular sets are regular: purdue3.|4159 ® Words:L = [A-Za-z]+
e To avoid ambiguity, can use () to group regexps together 3 .
® A choice between two regular sets is regular, using |: (purdue|3.14159) ® Literals (Integers or floats): -?D+(‘D+)?

® 0 or more of a regular set is regular; using *: (purdue)* ® |dentifiers: (_|L)(_|L|D)*

® Some other notation used for convenience: e Comments (as in MiCFO)' . Not(\n)*\n

® Use Not to accept all strings except those in a regular set
® More complex comments (delimited by ##, can use # inside

comment): ##((#|\)Not(#))“##

® Use ! to make a string optional: x? equivalent to (x|\)
® Use + to mean | or more strings from a set: x+ equivalent to xx*

® Use [] to present a range of choices: [|-3] equivalent to (1(2|3)

Wednesday, September 3, 14 Wednesday, September 3, 14

Scanner generators Lex (Flex)

® Commonly used Unix scanner generator (superseded by
® Essentially, tools for converting regular expressions into Flex)

scanners
® Flex is a domain specific language for writing scanners
® Two popular scanner generators
® Features:
® |ex (Flex): generates C/C++ scanners
® Character classes : define sets of characters (e.g., digits)
® ANTLR: generates Java scanners
® Token definitions : regex {action to take}

Wednesday, September 3, 14 Wednesday, September 3, 14

Lex (Flex)

DIGIT [0-9]
iD [a-z][a-20-9]*
%%

{DIGIT}+ {

printf("An integer: %s (%d)\n", yytext,
atoi(yytext));
}

{DIGIT}+"."{DIGIT}* {
printf("A float: %s (%g)\n", yytext,
atof(yytext));
}

if|then|begin|end|procedure|function {
printf("A keyword: %s\n", yytext);
}

{ID} printf("An identifier: %s\n", yytext);

Lex (Flex)

® The order in which tokens are defined matters!

® Lex will match the longest possible token
® “ifa” becomes ID(ifa), not IF ID(a)

® |f two regexes both match, Lex uses the one defined first
® “if” becomes IF, not ID(if)

® Use action blocks to process tokens as necessary
® Convert integer/float literals to numbers

® Remove quotes from string literals

Wednesday, September 3, 14

Wednesday, September 3, 14

Lex (Flex)

® Compile lex file to C code

® Example of compiling high-level language to another
high-level language!

® Compile generated scanner to produce working scanner

® Combine with yacc/bison to produce parser

ANTLR

® More powerful tool than Lex (can generate parsers, too,
not just scanners)

® Same basic principles
® Tokens:
® Token definition: tokenName : regex| | regex2 | ...
® Character classes:
® Look similar to token definitions
e fragment characterClassName : regex| | regex2 ...

® Can use character classes when defining tokens

Wednesday, September 3, 14

Wednesday, September 3, 14

How do flex and ANTLR work?

® Use a systematic technige for converting regular
expressions into code that recognizes when a string
matches that regular expression

® Key to efficiency: recognize matches as characters are read

® Enabling concept: finite automata

Finite automata

® Finite state machine which will only accept a string if it is in
the set defined by the regular expression

(@bct)+

_>C>_a_>C>_b->C>_C_>
p) i X ‘

/
/ | \ /7

)

Wednesday, September 3, 14

Wednesday, September 3, 14

A\ transitions

® Transitions between states that aren’t triggered by seeing
another character

® Can optionally take the transition, but do not have to

® Can be used to link states together

Non-deterministic FA

® Note that if a finite automaton has a A-transition in it, it
may be non-deterministic (do we take the transition? or not?)

® More precisely, FA is non-deterministic if, from one state
reading a single character could result in transition to
multiple states

® How do we deal with non-deterministic finite automata
(NFAs)?

Wednesday, September 3, 14

Wednesday, September 3, 14

“Running” an NFA

® Intuition: take every possible path through an NFA
® Think: parallel execution of NFA
® Maintain a “pointer” that tracks the current state

® Every time there is a choice, “split” the pointer, and have
one pointer follow each choice

® Track each pointer simultaneously
® [f a pointer gets stuck, stop tracking it

® [f any pointer reaches an accept state at the end of
input, accept

Example

® How does this NFA handle the string “aba”?

OSy ©
L

Gy~

Wednesday, September 3, 14

Wednesday, September 3, 14

Building a FA from a regexp

Expression FA

: (O
OO
A8 (OO-OHO-O-0

AlB o:%@

O =5

NFAs to DFAs

Can convert NFAs to deterministic finite automata (DFAs)

® No choices — never a need to “split” pointers

® |nitial idea: simulate NFA for all possible inputs, any time
there is a new configuration of pointers, create a state to

capture it
® Pointers at states |,3 and 4 = new state {l, 3,4}

e Trying all possible inputs is impractical; instead, for any new
state, explore all possible next states (that can be reached
with a single character)

® Process ends when there are no new states found

® This can result in very large DFAs!

Wednesday, September 3, 14

Wednesday, September 3, 14

Example

® Convert the following into a DFA

OSy ©
L

G~

DFA reduction

® DFAs built from NFAs are not necessarily optimal

® May contain many more states than is necessary

(ab)+ = (ab)(ab)*

OO

Wednesday, September 3, 14

Wednesday, September 3, 14

DFA reduction

® DFAs built from NFAs are not necessarily optimal

® May contain many more states than is necessary

(ab)+ = (ab)(ab)*

DFA reduction

® Intuition: merge equivalent states

® Two states are equivalent if they have the same
transitions to the same states

® Basic idea of optimization algorithm

a . . .
® Start with two big nodes, one representing all the final
states, the other representing all other states
a b . . .
® Successively split those nodes whose transitions lead to
nodes in the original DFA that are in different nodes in
the optimized DFA
Wednesday, September 3, 14 Wednesday, September 3, 14
Example Transition tables

® Simplify the following

~O-0-0
"\

-0

® Table encoding states and transitions of FA
® | row per state, | column per possible character

® Each entry: if automaton in a particular state sees a
character; what is the next state?

Character
State a
a b c
| 2
2 3 @_ 4 ‘@ ° : : o
Iy
) | 3
|

P
’

/ \ ,
] N . [EETIRRN

Wednesday, September 3, 14

Wednesday, September 3, 14

Finite automata program

® Using a transition table, it is straightforward to write a
program to recognize strings in a regular language

state = initial_state; //start state of FA
while (true) {

next_char = getcQ;

if (next_char == EOF) break;

next_state = T[state][next_char];

if (next_state == ERROR) break;

state = next_state;

}
if (is_final_state(state))
//recognized a valid string
else
handle_error(next_char);

Alternate implementation

® Here’s how we would implement the same program
“conventionally”

next_char = getcQ);

while (next_char == ‘a’) {
next_char = getcQ);
if (next_char !'= ‘b’) handle_error(next_char);
next_char = getcQ);
if (next_char != ‘c’) handle_error(next_char);
while (next_char == ‘c’) {

next_char = getc(Q);
if (next_char == EOF) return; //matched token
if (next_char == ‘a’) break;
if (next_char != ‘c’) handle_error(next_char);
}
}

handle_error(next_char);

Wednesday, September 3, 14

Wednesday, September 3, 14

Practical Considerations

Or: what do | have to worry about if I'm
actually going to write a scanner?

Handling reserved words

® Keywords can be written as regular expressions. However,
this leads to a big blowup in FA size

® Consider writing a regular expression that accepts
identifiers which cannot be if, while, do, for, etc.

® Usually better to specify reserved words as “exceptions”

® Capture them using the identifier regex, and then decide
if the token corresponds to a reserved word

Wednesday, September 3, 14

Wednesday, September 3, 14

Lookahead

® Up until now, we have only considered matching an entire
string to see if it is in a regular language

® What if we want to match multiple tokens from a file?
® Distinguish between int aand inta

® We need to look ahead to see if the next character
belongs to the current token

® [f it does, we can continue

® [f it doesn’t, the next character becomes part of the next
token

Multi-character lookahead

® Sometimes, a scanner will need to look ahead more than one
character to distinguish tokens

® Examples

® Fortran: DO | = 1,100 (loop) vs. DO | = 1.100 (variable
assignment)

® Pascal: 23.85 (literal) vs. 23..85 (range)
D)
OO

® 2 solutions: Backup or special “action” state

Wednesday, September 3, 14

Wednesday, September 3, 14

Multi-character lookahead

® Sometimes, a scanner will need to look ahead more than one
character to distinguish tokens

® Examples

® Fortran: DO | = 1,100 (loop) vs. DO | = 1.100 (variable
assignment)

® Pascal: 23.85 (literal) vs. 23..85 (range)

88

® 2 solutions: Backup or special “action” state

General approach

® Remember states (T) that can be final states
® Buffer the characters from then on

® |f stuck in a non-final state, back up to T, restore buffered
characters to stream

® Example: [2.3e+q

Il 2 . 3 e + ¢q

T Error!

Wednesday, September 3, 14

Wednesday, September 3, 14

Why can’t we do this?

® Just build an FA which recognizes the string

D+(A [.D+)(.| ..\D+(A\ |.D+) and recognize the final state
we are in to determine the token type?!

® Note that this will recognize tokens of the form 12.3 and
12.3

Error Recovery

® What do we do if we encounter a lexical error (a character
which causes us to take an undefined transition)?

® Two options

® Delete all currently read characters, start scanning from
current location

® Delete first character read, start scanning from second
character

® This presents problems with ill-formatted strings
(why?)

® One solution: create a new regexp to accept runaway
strings

Wednesday, September 3, 14

Next Time

® We've covered how to tokenize an input program
® But how do we decide what the tokens actually say?
® How do we recognize that
IF ID(a) OP(<) ID(b) { ID(a) ASSIGN LIT(5) ;}
is an if-statement?

® Next time: Parsers

Wednesday, September 3, 14

Wednesday, September 3, 14

