
Scanners

Wednesday, September 3, 14

Scanners

• Sometimes called lexers

• Recall: scanners break input stream up into a set of tokens

• Identifiers, reserved words, literals, etc.

• What do we need to know?

• How do we define tokens?

• How can we recognize tokens?

• How do we write scanners?

Wednesday, September 3, 14

Regular expressions
• Regular sets: set of strings defined by regular expressions

• Strings are regular sets (with one element): purdue 3.14159

• So is the empty string: λ (sometimes use ɛ instead)

• Concatentations of regular sets are regular: purdue3.14159

• To avoid ambiguity, can use () to group regexps together

• A choice between two regular sets is regular, using |: (purdue|3.14159)

• 0 or more of a regular set is regular, using *: (purdue)*

• Some other notation used for convenience:

• Use Not to accept all strings except those in a regular set

• Use ? to make a string optional: x? equivalent to (x|λ)

• Use + to mean 1 or more strings from a set: x+ equivalent to xx*

• Use [] to present a range of choices: [1-3] equivalent to (1|2|3)

Wednesday, September 3, 14

Examples of regular expressions

• Digits: D = [0-9]

• Words: L = [A-Za-z]+

• Literals (integers or floats): -?D+(.D*)?

• Identifiers: (_|L)(_|L|D)*

• Comments (as in Micro): -- Not(\n)*\n

• More complex comments (delimited by ##, can use # inside
comment): ##((#|λ)Not(#))*##

Wednesday, September 3, 14

Scanner generators

• Essentially, tools for converting regular expressions into
scanners

• Two popular scanner generators

• Lex (Flex): generates C/C++ scanners

• ANTLR: generates Java scanners

Wednesday, September 3, 14

Lex (Flex)

• Commonly used Unix scanner generator (superseded by
Flex)

• Flex is a domain specific language for writing scanners

• Features:

• Character classes : define sets of characters (e.g., digits)

• Token definitions : regex {action to take}

Wednesday, September 3, 14

Lex (Flex)
DIGIT [0-9]
ID [a-z][a-z0-9]*

%%

{DIGIT}+! {
! ! ! printf("An integer: %s (%d)\n", yytext,
! ! ! atoi(yytext));
! ! }

{DIGIT}+"."{DIGIT}*!{
 printf("A float: %s (%g)\n", yytext,
 atof(yytext));
 }

if|then|begin|end|procedure|function!{
! ! ! printf("A keyword: %s\n", yytext);
! ! }

{ID}! ! printf("An identifier: %s\n", yytext);

Wednesday, September 3, 14

Lex (Flex)

• The order in which tokens are defined matters!

• Lex will match the longest possible token

• “ifa” becomes ID(ifa), not IF ID(a)

• If two regexes both match, Lex uses the one defined first

• “if” becomes IF, not ID(if)

• Use action blocks to process tokens as necessary

• Convert integer/float literals to numbers

• Remove quotes from string literals

Wednesday, September 3, 14

Lex (Flex)

• Compile lex file to C code

• Example of compiling high-level language to another
high-level language!

• Compile generated scanner to produce working scanner

• Combine with yacc/bison to produce parser

Wednesday, September 3, 14

ANTLR

• More powerful tool than Lex (can generate parsers, too,
not just scanners)

• Same basic principles

• Tokens:

• Token definition: tokenName : regex1 | regex2 | ...

• Character classes:

• Look similar to token definitions

• fragment characterClassName : regex1 | regex2 ...

• Can use character classes when defining tokens

Wednesday, September 3, 14

How do flex and ANTLR work?

• Use a systematic techniqe for converting regular
expressions into code that recognizes when a string
matches that regular expression

• Key to efficiency: recognize matches as characters are read

• Enabling concept: finite automata

Wednesday, September 3, 14

Finite automata
• Finite state machine which will only accept a string if it is in

the set defined by the regular expression

(a b c+)+

a b c

a

c start state transition state final state

Wednesday, September 3, 14

λ transitions
• Transitions between states that aren’t triggered by seeing

another character

• Can optionally take the transition, but do not have to

• Can be used to link states together

λ

Wednesday, September 3, 14

Non-deterministic FA

• Note that if a finite automaton has a λ-transition in it, it
may be non-deterministic (do we take the transition? or not?)

• More precisely, FA is non-deterministic if, from one state
reading a single character could result in transition to
multiple states

• How do we deal with non-deterministic finite automata
(NFAs)?

Wednesday, September 3, 14

“Running” an NFA

• Intuition: take every possible path through an NFA

• Think: parallel execution of NFA

• Maintain a “pointer” that tracks the current state

• Every time there is a choice, “split” the pointer, and have
one pointer follow each choice

• Track each pointer simultaneously

• If a pointer gets stuck, stop tracking it

• If any pointer reaches an accept state at the end of
input, accept

Wednesday, September 3, 14

Example
• How does this NFA handle the string “aba”?

1 2

43

5λ a

a, b

aa

b

Wednesday, September 3, 14

a

λ

A B
λλ

A

B

λ

λ

λ

λ

A
λ

λ

λ

Expression FA

a

λ
AB

A|B

A*

Building a FA from a regexp

Mini-exercise: how do we build an FA that accepts Not(A)?

Wednesday, September 3, 14

NFAs to DFAs
• Can convert NFAs to deterministic finite automata (DFAs)

• No choices — never a need to “split” pointers

• Initial idea: simulate NFA for all possible inputs, any time
there is a new configuration of pointers, create a state to
capture it

• Pointers at states 1, 3 and 4 → new state {1, 3, 4}

• Trying all possible inputs is impractical; instead, for any new
state, explore all possible next states (that can be reached
with a single character)

• Process ends when there are no new states found

• This can result in very large DFAs!

Wednesday, September 3, 14

Example
• Convert the following into a DFA

1 2

43

5λ a

a, b

aa

b

Wednesday, September 3, 14

DFA reduction
• DFAs built from NFAs are not necessarily optimal

• May contain many more states than is necessary

(ab)+ ≡ (ab)(ab)*

a b a

b

Wednesday, September 3, 14

DFA reduction
• DFAs built from NFAs are not necessarily optimal

• May contain many more states than is necessary

(ab)+ ≡ (ab)(ab)*

a b

a

Wednesday, September 3, 14

DFA reduction

• Intuition: merge equivalent states

• Two states are equivalent if they have the same
transitions to the same states

• Basic idea of optimization algorithm

• Start with two big nodes, one representing all the final
states, the other representing all other states

• Successively split those nodes whose transitions lead to
nodes in the original DFA that are in different nodes in
the optimized DFA

Wednesday, September 3, 14

Example
• Simplify the following

1 2 3

5 6

4

7

a

d

b c

b c

Wednesday, September 3, 14

Transition tables
• Table encoding states and transitions of FA

• 1 row per state, 1 column per possible character

• Each entry: if automaton in a particular state sees a
character, what is the next state?

State
CharacterCharacterCharacter

State
a b c

1 2

2 3

3 4

4 2 4

1 42 3a b c

a

c start state transition state final state

Wednesday, September 3, 14

Finite automata program
• Using a transition table, it is straightforward to write a

program to recognize strings in a regular language

state = initial_state; //start state of FA
while (true) {
 next_char = getc();
 if (next_char == EOF) break;
 next_state = T[state][next_char];
 if (next_state == ERROR) break;
 state = next_state;
}
if (is_final_state(state))
 //recognized a valid string
else
 handle_error(next_char);

Wednesday, September 3, 14

Alternate implementation
• Here’s how we would implement the same program

“conventionally”
next_char = getc();
while (next_char == ‘a’) {
 next_char = getc();
 if (next_char != ‘b’) handle_error(next_char);
 next_char = getc();
 if (next_char != ‘c’) handle_error(next_char);
 while (next_char == ‘c’) {
 next_char = getc();
 if (next_char == EOF) return; //matched token
 if (next_char == ‘a’) break;
 if (next_char != ‘c’) handle_error(next_char);
 }
}
handle_error(next_char);

Wednesday, September 3, 14

Practical Considerations
Or: what do I have to worry about if I’m

actually going to write a scanner?

Wednesday, September 3, 14

Handling reserved words

• Keywords can be written as regular expressions. However,
this leads to a big blowup in FA size

• Consider writing a regular expression that accepts
identifiers which cannot be if, while, do, for, etc.

• Usually better to specify reserved words as “exceptions”

• Capture them using the identifier regex, and then decide
if the token corresponds to a reserved word

Wednesday, September 3, 14

Lookahead

• Up until now, we have only considered matching an entire
string to see if it is in a regular language

• What if we want to match multiple tokens from a file?

• Distinguish between int a and inta

• We need to look ahead to see if the next character
belongs to the current token

• If it does, we can continue

• If it doesn’t, the next character becomes part of the next
token

Wednesday, September 3, 14

Multi-character lookahead
• Sometimes, a scanner will need to look ahead more than one

character to distinguish tokens

• Examples

• Fortran: DO I = 1,100 (loop) vs. DO I = 1.100 (variable
assignment)

• Pascal: 23.85 (literal) vs. 23..85 (range)

• 2 solutions: Backup or special “action” state

D . D

D D

Wednesday, September 3, 14

D . D

D D

.

Multi-character lookahead
• Sometimes, a scanner will need to look ahead more than one

character to distinguish tokens

• Examples

• Fortran: DO I = 1,100 (loop) vs. DO I = 1.100 (variable
assignment)

• Pascal: 23.85 (literal) vs. 23..85 (range)

• 2 solutions: Backup or special “action” state

Wednesday, September 3, 14

General approach
• Remember states (T) that can be final states

• Buffer the characters from then on

• If stuck in a non-final state, back up to T, restore buffered
characters to stream

• Example: 12.3e+q

1 2 . 3 e + qinput stream

FA processing T Error!

Wednesday, September 3, 14

Why can’t we do this?

• Just build an FA which recognizes the string

D+(λ |.D+)(. | ..)D+(λ |.D+) and recognize the final state
we are in to determine the token type?

• Note that this will recognize tokens of the form 12.3 and
12..3

Wednesday, September 3, 14

Error Recovery

• What do we do if we encounter a lexical error (a character
which causes us to take an undefined transition)?

• Two options

• Delete all currently read characters, start scanning from
current location

• Delete first character read, start scanning from second
character

• This presents problems with ill-formatted strings
(why?)

• One solution: create a new regexp to accept runaway
strings

Wednesday, September 3, 14

Next Time

• We’ve covered how to tokenize an input program

• But how do we decide what the tokens actually say?

• How do we recognize that

IF ID(a) OP(<) ID(b) { ID(a) ASSIGN LIT(5) ; }

is an if-statement?

• Next time: Parsers

Wednesday, September 3, 14

