Scanners

® Sometimes called lexers
® Recall: scanners break input stream up into a set of tokens
Sca n n e rs ® |dentifiers, reserved words, literals, etc.
® What do we need to know?
® How do we define tokens?
® How can we recognize tokens?

® How do we write scanners?
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Regular expressions Examples of regular expressions

®  Regular sets: set of strings defined by regular expressions
®  Strings are regular sets (with one element): purdue 3.14159
®  Sois the empty string: \ (sometimes use € instead) b DigitS: D= [0'9]
e Concatentations of regular sets are regular: purdue3.|4159 ® Words:L = [A-Za-z]+
e  To avoid ambiguity, can use () to group regexps together 3 .
® A choice between two regular sets is regular, using |: (purdue|3.14159) ® Literals (Integers or floats): -?D+(‘D+)?

® 0 or more of a regular set is regular; using *: (purdue)* ® |dentifiers: (_|L)(_|L|D)*

®  Some other notation used for convenience: e Comments (as in MiCFO)' . Not(\n)*\n

®  Use Not to accept all strings except those in a regular set
® More complex comments (delimited by ##, can use # inside

comment): ##((#|\)Not(#))“##

®  Use ! to make a string optional: x? equivalent to (x|\)
® Use + to mean | or more strings from a set: x+ equivalent to xx*

® Use [ ] to present a range of choices: [ |-3] equivalent to (1(2|3)
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Scanner generators Lex (Flex)

® Commonly used Unix scanner generator (superseded by
® Essentially, tools for converting regular expressions into Flex)

scanners
® Flex is a domain specific language for writing scanners
® Two popular scanner generators
® Features:
® |ex (Flex): generates C/C++ scanners
® Character classes : define sets of characters (e.g., digits)
® ANTLR: generates Java scanners
® Token definitions : regex {action to take}
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Lex (Flex)

DIGIT [0-9]
iD [a-z][a-20-9]*
%%

{DIGIT}+ {

printf( "An integer: %s (%d)\n", yytext,
atoi( yytext ) );
}

{DIGIT}+"."{DIGIT}* {
printf( "A float: %s (%g)\n", yytext,
atof( yytext ) );
}

if|then|begin|end|procedure|function {
printf( "A keyword: %s\n", yytext );
}

{ID} printf( "An identifier: %s\n", yytext );

Lex (Flex)

® The order in which tokens are defined matters!

® Lex will match the longest possible token
® “ifa” becomes ID(ifa), not IF ID(a)

® |f two regexes both match, Lex uses the one defined first
® “if” becomes IF, not ID(if)

® Use action blocks to process tokens as necessary
® Convert integer/float literals to numbers

® Remove quotes from string literals
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Lex (Flex)

® Compile lex file to C code

® Example of compiling high-level language to another
high-level language!

® Compile generated scanner to produce working scanner

® Combine with yacc/bison to produce parser

ANTLR

® More powerful tool than Lex (can generate parsers, too,
not just scanners)

® Same basic principles
® Tokens:
® Token definition: tokenName : regex| | regex2 | ...
® Character classes:
® Look similar to token definitions
e fragment characterClassName : regex| | regex2 ...

® Can use character classes when defining tokens
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How do flex and ANTLR work?

® Use a systematic technige for converting regular
expressions into code that recognizes when a string
matches that regular expression

® Key to efficiency: recognize matches as characters are read

® Enabling concept: finite automata

Finite automata

® Finite state machine which will only accept a string if it is in
the set defined by the regular expression
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A\ transitions

® Transitions between states that aren’t triggered by seeing
another character

® Can optionally take the transition, but do not have to

® Can be used to link states together

Non-deterministic FA

® Note that if a finite automaton has a A-transition in it, it
may be non-deterministic (do we take the transition? or not?)

® More precisely, FA is non-deterministic if, from one state
reading a single character could result in transition to
multiple states

® How do we deal with non-deterministic finite automata
(NFAs)?
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“Running” an NFA

® Intuition: take every possible path through an NFA
® Think: parallel execution of NFA
® Maintain a “pointer” that tracks the current state

® Every time there is a choice, “split” the pointer, and have
one pointer follow each choice

® Track each pointer simultaneously
® [f a pointer gets stuck, stop tracking it

® [f any pointer reaches an accept state at the end of
input, accept

Example

® How does this NFA handle the string “aba”?

OSy ©
L

Gy~
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Building a FA from a regexp

Expression FA

: (O
OO
A8 (OO-OHO-O-0

AlB o:%@

O =5

NFAs to DFAs

Can convert NFAs to deterministic finite automata (DFAs)

® No choices — never a need to “split” pointers

® |nitial idea: simulate NFA for all possible inputs, any time
there is a new configuration of pointers, create a state to

capture it
® Pointers at states |,3 and 4 = new state {l, 3,4}

e Trying all possible inputs is impractical; instead, for any new
state, explore all possible next states (that can be reached
with a single character)

® Process ends when there are no new states found

® This can result in very large DFAs!
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Example

® Convert the following into a DFA

OSy ©
L

G~

DFA reduction

® DFAs built from NFAs are not necessarily optimal

® May contain many more states than is necessary

(ab)+ = (ab)(ab)*

OO
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DFA reduction

® DFAs built from NFAs are not necessarily optimal

® May contain many more states than is necessary

(ab)+ = (ab)(ab)*

DFA reduction

® Intuition: merge equivalent states

® Two states are equivalent if they have the same
transitions to the same states

® Basic idea of optimization algorithm

a . . .
® Start with two big nodes, one representing all the final
states, the other representing all other states
a b . . .
® Successively split those nodes whose transitions lead to
nodes in the original DFA that are in different nodes in
the optimized DFA
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Example Transition tables

® Simplify the following

~O-0-0
"\

-0

® Table encoding states and transitions of FA
® | row per state, | column per possible character

® Each entry: if automaton in a particular state sees a
character; what is the next state?

Character
State a
a b c
| 2
2 3 @_ 4 ‘@ ° : : o
Iy
) | 3
|

P
’

/ \ ,
] N . [EETIRRN
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Finite automata program

® Using a transition table, it is straightforward to write a
program to recognize strings in a regular language

state = initial_state; //start state of FA
while (true) {

next_char = getcQ;

if (next_char == EOF) break;

next_state = T[state][next_char];

if (next_state == ERROR) break;

state = next_state;

}
if (is_final_state(state))
//recognized a valid string
else
handle_error(next_char);

Alternate implementation

® Here’s how we would implement the same program
“conventionally”

next_char = getcQ);

while (next_char == ‘a’) {
next_char = getcQ);
if (next_char !'= ‘b’) handle_error(next_char);
next_char = getcQ);
if (next_char != ‘c’) handle_error(next_char);
while (next_char == ‘c’) {

next_char = getc(Q);
if (next_char == EOF) return; //matched token
if (next_char == ‘a’) break;
if (next_char != ‘c’) handle_error(next_char);
}
}

handle_error(next_char);
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Practical Considerations

Or: what do | have to worry about if I'm
actually going to write a scanner?

Handling reserved words

® Keywords can be written as regular expressions. However,
this leads to a big blowup in FA size

® Consider writing a regular expression that accepts
identifiers which cannot be if, while, do, for, etc.

® Usually better to specify reserved words as “exceptions”

® Capture them using the identifier regex, and then decide
if the token corresponds to a reserved word
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Lookahead

® Up until now, we have only considered matching an entire
string to see if it is in a regular language

® What if we want to match multiple tokens from a file?
® Distinguish between int aand inta

® We need to look ahead to see if the next character
belongs to the current token

® [f it does, we can continue

® [f it doesn’t, the next character becomes part of the next
token

Multi-character lookahead

® Sometimes, a scanner will need to look ahead more than one
character to distinguish tokens

® Examples

® Fortran: DO | = 1,100 (loop) vs. DO | = 1.100 (variable
assignment)

® Pascal: 23.85 (literal) vs. 23..85 (range)
D )
OO

® 2 solutions: Backup or special “action” state
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Multi-character lookahead

® Sometimes, a scanner will need to look ahead more than one
character to distinguish tokens

® Examples

® Fortran: DO | = 1,100 (loop) vs. DO | = 1.100 (variable
assignment)

® Pascal: 23.85 (literal) vs. 23..85 (range)

88

® 2 solutions: Backup or special “action” state

General approach

® Remember states (T) that can be final states
® Buffer the characters from then on

® |f stuck in a non-final state, back up to T, restore buffered
characters to stream

® Example: [2.3e+q

Il 2 . 3 e + ¢q

T Error!
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Why can’t we do this?

® Just build an FA which recognizes the string

D+( A [.D+)(.| ..\D+( A\ |.D+) and recognize the final state
we are in to determine the token type?!

® Note that this will recognize tokens of the form 12.3 and
12.3

Error Recovery

® What do we do if we encounter a lexical error (a character
which causes us to take an undefined transition)?

® Two options

® Delete all currently read characters, start scanning from
current location

® Delete first character read, start scanning from second
character

® This presents problems with ill-formatted strings
(why?)

® One solution: create a new regexp to accept runaway
strings
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Next Time

® We've covered how to tokenize an input program
® But how do we decide what the tokens actually say?
® How do we recognize that
IF ID(a) OP(<) ID(b) { ID(a) ASSIGN LIT(5) ;}
is an if-statement?

® Next time: Parsers
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