ECE 468 & 573
Problem Set 4: Instruction scheduling & loop transformations

Instruction scheduling

1. Assume that your machine has two ALUs, which can execute ADDs in a single cycle and one of the two ALUs can execute MULs in two cycles, but the ALUs are fully pipelined (a new instruction can be issued in each cycle). There is also a single LD/ST unit. LOADs take up an ALU for one cycle and the LD/ST for two cycles, while STs take up an ALU for one cycle and the LD/ST for one cycle. The LD/ST unit is not fully pipelined (new instructions cannot be scheduled on the unit until the previous instructions complete). What are the latencies for each instruction? Draw the reservation tables for this machine.

2. Draw the scheduling DAG for the following program:

 1. LOAD(A) R1
 2. LOAD(B) R2
 3. LOAD(C) R3
 4. LOAD(D) R4
 5. R5 = R1 + R2
 6. R6 = R5 * R3
 7. R7 = R1 + R6
 8. R8 = R6 + R5
 9. R9 = R4 + R7
 10. R10 = R9 + R8
 11. ST(R10) E;
 12. ST(R7) F;

3. Give the schedule you obtain after performing height-based list scheduling on the above code.

Loop transformations

For the following problems, consider the code below:

1. X = 2;
2. Y = 10;
3. if (X < Y) goto 14
4. A = Y * X;
5. \(B = X \ast 2 + Y; \)
6. \(Z = 10; \)
7. if \((B < Z)\) goto 12 //This was a mistake in the original version!
8. \(D = Y + Z \ast -3; \)
9. \(Q = Y - 8; \)
10. \(Z = Z - Q; \)
11. goto 7;
12. \(X = X + 2; \)
13. goto 3;
14. \(Y = D; \)
15. halt;

1. Draw the CFG for the code above. Identify the loops in the code.

2. Which statements are loop invariant? Can they be moved outside their enclosing loop? Show the code that results after hoisting any loop invariant code outside the loop.

3. Identify the induction variables in this code. Show the code that results after performing any possible strength reduction.

4. Show the code after performing any possible linear test replacement.