Analysis of programs with pointers

Simple example

\[
\begin{align*}
 x &:= 5 & S1 \\
 ptr &:= @x & S2 \\
 *ptr &:= 9 & S3 \\
 y &:= x & S4
\end{align*}
\]

What are the dependences in this program?

- Problem: just looking at variable names will not give you the correct information
 - After statement S2, program names “x” and “*ptr” are both expressions that refer to the same memory location.
 - We say that ptr points-to x after statement S2.
- In a C-like language that has pointers, we must know the points-to relation to be able to determine dependences correctly

Program model

- For now, only types are int and int*
- No heap
 - All pointers point to only to stack variables
- No procedure or function calls
- Statements involving pointer variables:
 - address: x := &y
 - copy: x := y
 - load: x := *y
 - store: *x := y
- Arbitrary computations involving ints

Points-to relation

- Directed graph:
 - nodes are program variables
 - edge (a,b): variable a points-to variable b
 - Can use a special node to represent NULL
 - Points-to relation is different at different program points

Points-to graph

- Out-degree of node may be more than one
 - if points-to graph has edges (a,b) and (a,c), it means that variable a may point to either b or c
 - depending on how we got to that point, one or the other will be true
 - path-sensitive analyses: track how you got to a program point (we will not do this)

Ordering on points-to relation

- Subset ordering: for a given set of variables
 - Least element is graph with no edges
 - G1 <= G2 if G2 has all the edges G1 has and maybe some more
- Given two points-to relations G1 and G2
 - G1 U G2: least graph that contains all the edges in G1 and in G2
Overview

- We will look at three different points-to analyses.
- Flow-sensitive points-to analysis
 - Dataflow analysis
 - Computes a different points-to relation at each point in program
- Flow-insensitive points-to analysis
 - Computes a single points-to graph for entire program
 - Andersen’s algorithm
 - Natural simplification of flow-sensitive algorithm
 - Steensgard’s algorithm
 - Nodes in tree are equivalence classes of variables
 - if x may point-to either y or z, put y and z in the same equivalence class
 - Points-to relation is a tree with edges from children to parents rather than a general graph
 - Less precise than Andersen’s algorithm but faster

Example

```
x := &z
ptr := @x
y := @w
ptr := @y
```

Steensgard’s algorithm

Notation

- Suppose S and S1 are set-valued variables.
- S ← S1: strong update
 - set assignment
- S U← S1: weak update
 - set union: this is like S ← S U S1

Dataflow equations

- Forward flow, any path analysis
- Confluence operator: G1 U G2
- Statements

```
x := &y
G' = G with pt'(x) ← \{y\}
x := y
G' = G with pt'(x) ← pt(y)
x := *y
G' = G with pt'(x) ← U pt(a) for all a in pt(y)
x := y
G' = G with pt'(a) U← pt(y) for all a in pt(x)
```

Dataflow equations (contd.)

```
x := &y
G = G with pt'(x) ← \{y\}
x := y
G = G with pt'(x) ← pt(y)
x := *y
G = G with pt'(x) ← U pt(a) for all a in pt(y)
```

strong updates

```
x := &y
G = G with pt'(x) ← \{y\}
x := y
G = G with pt'(x) ← pt(y)
x := *y
G = G with pt'(x) ← U pt(a) for all a in pt(y)
```

weak update (why?)
Strong vs. weak updates

- **Strong update:**
 - At assignment statement, you know precisely which variable is being written to.
 - Example: $x := \ldots$
 - You can remove points-to information about x coming into the statement in the dataflow analysis.

- **Weak update:**
 - You do not know precisely which variable is being updated; only that it is one among some set of variables.
 - Example: $\ast x := \ldots$
 - Problem: at analysis time, you may not know which variable x points to (see slide on control-flow and out-degree of nodes)
 - Refinement: if out-degree of x in points-to graph is 1 and x is known not be nil, we can do a strong update even for $\ast x := \ldots$

Structures

- **Structure types**
 - struct cell (int value; struct cell *left, *right;)
 - struct cell x,y;
- **Use a “field-sensitive” model**
 - x and y are nodes
 - each node has three internal fields labeled value, left, right
- **This representation permits pointers into fields of structures**
 - If this is not necessary, we can simply have a node for each structure and label outgoing edges with field name

Example

```c
int main(void) {
    struct cell {int value;
        struct cell *next;
    };
    struct cell x,y,*p;
    int sum;
    x.value = 5;
    x.next = &y;
    y.value = 6;
    y.next = &z;
    z.value = 7;
    z.next = NULL;
    p = &x;
    sum = 0;
    while (p != NULL) {
        sum = sum + (*p).value;
        p = (*p).next;
    }
    return sum;
}
```

Flow-insensitive analysis

- Flow-sensitive analysis computes a different graph at each program point.
- This can be quite expensive.
- One alternative: flow-insensitive analysis
 - Intuition: compute a points-to relation which is the least upper bound of all the points-to relations computed by the flow-sensitive analysis
- **Approach:**
 - Ignore control-flow
 - Consider all assignment statements together
 - replace strong updates in dataflow equations with weak updates
 - Compute a single points-to relation that holds regardless of the order in which assignment statements are actually executed

Andersen’s algorithm

- **Statements**
 - $x := &y$
 - $G = G \text{ with pt}(x) \subseteq \{y\}$
 - $x := y$
 - $G = G \text{ with pt}(x) \subseteq \text{pt}(a)$ for all a in pt(y)
 - $\ast x := \ldots$
 - $G = G \text{ with pt}(x) \subseteq \text{pt}(y)$
 - $\ast x := \ldots$
 - $G = G \text{ with pt}(a) \subseteq \text{pt}(y)$ for all a in pt(x)
Example

```c
int main(void)
{
    struct cell {
        int value;
        struct cell *next;
    };
    struct cell x,y,z,*p;
    int sum;
    x.value = 5;
    x.next = &y;
    y.value = 6;
    y.next = &z;
    z.value = 7;
    z.next = NULL;
    p = &x;
    sum = 0;
    while (p != NULL)
    {
        sum = sum + (*p).value;
        p = (*p).next;
    }
    return sum;
}
```

Solution to flow-insensitive equations

```
Assignments for flow-insensitive analysis

G

- Compare with points-to graphs for flow-sensitive solution
- Why does p point-to NULL in this graph?

Wednesday, November 30, 2011
```

Andersen’s algorithm formulated using set constraints

- Statements
  ```
  pt : var ⊆ 2^m
  ```
  ```
  x := &y
  y ∈ pt(x)
  ```
  ```
  ∀a ∈ pt(y), pt(x) ⊇ pt(a)
  ```
  ```
  x := y
  pt(x) ⊇ pt(y)
  ```
  ```
  ∀a ∈ pt(x), pt(a) ⊇ pt(y)
  ```
  ```
  Steensgard’s algorithm
  ```
 - Flow-insensitive
 - Computes a points-to graph in which there is no fan-out
 - In points-to graph produced by Andersen’s algorithm, if x points-to y and z, y and z are collapsed into an equivalence class
 - Less accurate than Andersen’s but faster
 - We can exploit this to design an \(O(N^2*\alpha(N))\) algorithm, where \(N\) is the number of statements in the program.

```

Steensgard’s algorithm using set constraints

- Statements
  ```
 pt : var ⊆ 2^m
  ```
  ```
 No fan-out
  ```
  ```
 ∀x,y,z ∈ pt(x). pt(y) = pt(z)
  ```
  ```
 x := &y
 y ∈ pt(x)
  ```
  ```
 ∀a ∈ pt(y), pt(x) ⊇ pt(a)
  ```
  ```
 x := y
 pt(x) = pt(y)
  ```
  ```
 ∀a ∈ pt(x), pt(a) = pt(y)
  ```
  ```
 Trick for one-pass processing
  ```
  - Consider the following equations
    ```
 pt(x) = pt(y) \quad dummy ∈ pt(x)
 z ∈ pt(x) \quad pt(x) = pt(y)
 z ∈ pt(x)
    ```
  ```
 - When first equation on left is processed, x and y are not pointing to anything.
  ```
  - Once second equation is processed, we need to go back and reprocess first equation.
  ```
 - Trick to avoid doing this: when processing first equation, if x and y are not pointing to anything, create a dummy node and make x and y point to that.
  ```
  - This is like solving the system on the right
  ```
 - It is easy to show that this avoids the need for revisiting equations.

```

Wednesday, November 30, 2011
Algorithm

• Can be implemented in single pass through program
• Algorithm uses union-find to maintain equivalence classes (sets) of nodes
• Points-to relation is implemented as a pointer from a variable to a representative of a set
• Basic operations for union find:
  – rep(v): find the node that is the representative of the set that v is in
  – union(v1, v2): create a set containing elements in sets containing v1 and v2, and return representative of that set

Initialization: make each program variable into an object of type var and enter object into union-find data structure

for each statement S in the program do
  S is x := y:  {if (pt(x) == null) x.set-pter(rep(y));
                  else rec-union(pt(x),y); }
  S is x := &y:  {if (pt(x) == null) x.set-pter(rep(y));
                 else rec-union(pt(x),rep(y));
  S is x := *y:{if (pt(x) == null) x.set-pter(var.make-dummy-var());
               else rec-union(pt(x),pt(a));
  S is *x := y:{if (pt(x) == null) x.set-pter(var.make-dummy-var());
               else rec-union(pt(y),pt(a));

Auxiliary methods

class var {
    //instance variables
    points_to: var;
    name: string;

    //constructor; also creates singleton set in union-find data structure
    var(string);

    //class method; also creates singleton set in union-find data structure
    make-dummy-var():var;

    //instance methods
    get_pt(): var;
    set_pt(var);//updates rep
}

class recUnion {
    var rec_union(var v1, var v2) {
        p1 = pt(rep(v1));
        p2 = pt(rep(v2));
        t1 = union(rep(v1), rep(v2));
        if (p1 == p2) return;
        else if (p1 != null && p2 != null) t2 = rec_union(p1, p2);
        else if (p1 != null) t2 = p1;
        else if (p2 != null) t2 = p2;
        else t2 = null;
        t1.set_pt(t2);
        return t1;
    }

    pt(var v) {
        //v does not have to be representative
        t = rep(v);
        return t.get_pt();
    }

Inter-procedural analysis

• What do we do if there are function calls?

Two approaches

• Context-sensitive approach:
  – treat each function call separately just like real program execution would
  – problem: what do we do for recursive functions?
    • need to approximate
• Context-insensitive approach:
  – merge information from all call sites of a particular function
  – in effect, inter-procedural analysis problem is reduced to intra-procedural analysis problem
• Context-sensitive approach is obviously more accurate but also more expensive to compute
Context-sensitive approach

```
x1 = &a
y1 = &b
swap(x1, y1)
```

```
x2 = &a
y2 = &b
swap(x2, y2)
```

```
swap (p1, p2) {
 t1 = *p1;
 t2 = *p2;
 *p1 = t2;
 *p2 = t1;
}
```

Context-insensitive/Flow-insensitive Analysis

- For now, assume we do not have function parameters
  - this means we know all the call sites for a given function
- Set up equations for binding of actual and formal parameters at each call site for that function
  - use same variables for formal parameters for all call sites
- Intuition: each invocation provides a new set of constraints to formal parameters

Swap example

```
x1 = &a
y1 = &b
p1 = x1
p2 = y1
```

```
x2 = &a
y2 = &b
p1 = x2
p2 = y2
```

```
t1 = *p1;
t2 = *p2;
*p1 = t2;
*p2 = t1;
```

Heap allocation

- Simplest solution:
  - use one node in points-to graph to represent all heap cells
- More elaborate solution:
  - use a different node for each malloc site in the program
- Even more elaborate solution: shape analysis
  - goal: summarize potentially infinite data structures
  - but keep around enough information so we can disambiguate pointers from stack into the heap, if possible

Summary

<table>
<thead>
<tr>
<th>Less precise</th>
<th>More precise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equality-based</td>
<td>Subset-based</td>
</tr>
<tr>
<td>Flow-insensitive</td>
<td>Flow-sensitive</td>
</tr>
<tr>
<td>Context-insensitive</td>
<td>Context-sensitive</td>
</tr>
</tbody>
</table>

No consensus about which technique to use
Experience: if you are context-insensitive, you might as well be flow-insensitive

History of points-to analysis

![History of points-to analysis](image)