Dataflow Analysis
Program optimizations

- So far we have talked about different kinds of optimizations
 - Peephole optimizations
 - Local common sub-expression elimination
 - Loop optimizations
- What about *global optimizations*
 - Optimizations across multiple basic blocks (usually a whole procedure)
 - Not just a single loop
Useful optimizations

- Common subexpression elimination (global)
 - Need to know which expressions are available at a point
- Dead code elimination
 - Need to know if the effects of a piece of code are never needed, or if code cannot be reached
- Constant folding
 - Need to know if variable has a constant value
- Loop invariant code motion
 - Need to know where and when variables are live
- So how do we get this information?
Dataflow analysis

- Framework for doing compiler analyses to drive optimization
- Works across basic blocks
- Examples
 - Constant propagation: determine which variables are constant
 - Liveness analysis: determine which variables are live
 - Available expressions: determine which expressions are have valid computed values
 - Reaching definitions: determine which definitions could “reach” a use
Example: constant propagation

- **Goal:** determine when variables take on constant values
- **Why?** Can enable many optimizations
 - **Constant folding**

  ```
  x = 1;
  y = x + 2;
  if (x > z) then y = 5
  ... y ...
  
  x = 1;
  y = x + 2;
  if (y > x) then y = 5
  ... y ...
  ```
- **Create dead code**
Example: constant propagation

- Goal: determine when variables take on constant values
- Why? Can enable many optimizations
 - Constant folding

```
x = 1;
y = x + 2;
if (x > z) then y = 5
... y ...
```

```
x = 1;
y = x + 2;
if (y > x) then y = 5
... y ...
```

- Create dead code

```
x = 1;
y = x + 2;
if (x > z) then y = 5
... y ...
```

```
x = 1;
y = x + 2;
if (x > z) then y = 5
... y ...
```
Example: constant propagation

- Goal: determine when variables take on constant values

- Why? Can enable many optimizations

 - Constant folding

    ```
    x = 1;
y = x + 2;
if (x > z) then y = 5
... y ...
    ```

 - Create dead code

    ```
    x = 1;
y = x + 2;
if (y > x) then y = 5
... y ...
    ```
How can we find constants?

• Ideal: run program and see which variables are constant
 • Problem: variables can be constant with some inputs, not others – need an approach that works for all inputs!
 • Problem: program can run forever (infinite loops?) – need an approach that we know will finish

• Idea: run program *symbolically*

• Essentially, keep track of whether a variable is constant or not constant (but nothing else)
Overview of algorithm

- Build control flow graph
 - We’ll use statement-level CFG (with merge nodes) for this
- Perform symbolic evaluation
 - Keep track of whether variables are constant or not
- Replace constant-valued variable uses with their values, try to simplify expressions and control flow
Build CFG

\[x = 1; \]
\[y = x + 2; \]
\[\text{if } (y > x) \text{ then } y = 5; \]
\[\ldots y \ldots \]
Symbolic evaluation

• Idea: replace each value with a symbol
• constant (specify which), no information, definitely not constant
• Can organize these possible values in a lattice (will formalize this later)
Symbolic evaluation

- Evaluate expressions symbolically: $\text{eval}(e, V_{in})$

- If e evaluates to a constant, return that value. If any input is \top (or \bot), return \top (or \bot)

- Why?

- Two special operations on lattice
 - $\text{meet}(a, b)$ – highest value less than or equal to both a and b
 - $\text{join}(a, b)$ – lowest value greater than or equal to both a and b

Join often written as $a \sqcup b$
Meet often written as $a \sqcap b$
Putting it together

- Keep track of the symbolic value of a variable at every program point (on every CFG edge)
- State vector
- What should our initial value be?
 - Starting state vector is all \top
 - Can’t make any assumptions about inputs – must assume not constant
 - Everything else starts as \bot, since we don’t know if the variable is constant or not at that point
Executing symbolically

- For each statement \(t = e \), evaluate \(e \) using \(V_{in} \), update value for \(t \) and propagate state vector to next statement
- What about switches?
 - If \(e \) is true or false, propagate \(V_{in} \) to appropriate branch
- What if we can’t tell?
 - Propagate \(V_{in} \) to both branches, and symbolically execute both sides
- What do we do at merges?
Handling merges

- Have two different V_{in}s coming from two different paths
- Goal: want new value for V_{in} to be *safe* (shouldn’t generate wrong information), and we don’t know which path we actually took
- Consider a single variable. Several situations:
 - $V_1 = \bot, V_2 = * \rightarrow V_{out} = *$
 - $V_1 = \text{constant } x, V_2 = x \rightarrow V_{out} = x$
 - $V_1 = \text{constant } x, V_2 = \text{constant } y \rightarrow V_{out} = \top$
 - $V_1 = \top, V_2 = * \rightarrow V_{out} = \top$
- Generalization:
 - $V_{out} = V_1 \cup V_2$
Result: worklist algorithm

• Associate state vector with each edge of CFG, initialize all values to ⊥, worklist has just start edge

• While worklist not empty, do:

 Process the next edge from worklist
 Symbolically evaluate target node of edge using input state vector
 If target node is assignment (x = e), propagate V_{in}[eval(e)/x] to output edge
 If target node is branch (e?)
 If eval(e) is true or false, propagate V_{in} to appropriate output edge
 Else, propagate V_{in} along both output edges
 If target node is merge, propagate join(all V_{in}) to output edge
 If any output edge state vector has changed, add it to worklist
Running example

```plaintext
start
x = 1
y = x + 2
y > x ?

merge
... y ...

end
```
Running example

\[
\begin{align*}
\text{start} & \quad x \quad y \\
\text{x = 1} & \quad 1 \quad T \\
\text{y = x + 2} & \quad 1 \quad 3 \\
\text{y > x ?} & \quad 1 \quad 3 \\
\text{merge} & \quad 1 \quad 5 \\
\text{... y ...} & \quad 1 \quad 5 \\
\text{end} & \quad 1 \quad 5 \\
\end{align*}
\]
What do we do about loops?

• Unless a loop never executes, symbolic execution looks like it will keep going around to the same nodes over and over again.

• Insight: if the input state vector(s) for a node don’t change, then its output doesn’t change.

• If input stops changing, then we are done!

• Claim: input will eventually stop changing. Why?
Loop example

First time through loop, $x = 1$
Subsequent times, $x = \top$

Monday, November 11, 13
Complexity of algorithm

- $V = \#$ of variables, $E = \#$ of edges
- Height of lattice = 2 \rightarrow each state vector can be updated at most $2 \times V$ times.
- So each edge is processed at most $2 \times V$ times, so we process at most $2 \times E \times V$ elements in the worklist.
- Cost to process a node: $O(V)$
- Overall, algorithm takes $O(EV^2)$ time
Question

- Can we generalize this algorithm and use it for more analyses?
- First, let’s lay the theoretical foundation for dataflow analysis.
Lattice Theory
First, something interesting

- Brouwer Fixpoint Theorem
 - Every continuous function f from a closed disk into itself has at least one fixed point
 - More formally:
 - Domain D: a *convex, closed, bounded* subspace in a plane (generalizes to higher dimensions)
 - Function $f : D \to D$
 - There exists some x such that $f(x) = x$
Intuition

- Consider the one-dimensional case: mapping a line segment onto itself
 - \(x \in [0, 1] \)
 - \(f(x) \in [0, 1] \)
 - There must exist some \(x \) for which \(f(x) = x \)
- Examples (in 2D)
 - A mall directory
 - Crumpling up a piece of graph paper
Back to dataflow

- Game plan:
 - Finite partially ordered set with least element: D
 - Function $f : D \rightarrow D$
 - Monotonic function $f : D \rightarrow D$
 - \exists fixpoint of f
 - \exists least fixpoint of f
 - Generalization to case when D has a greatest element, \top
 - \exists greatest fixpoint of f
 - Generalization to systems of equations
Partially ordered set (poset)

- Set D with a relation \sqsubseteq that is
 - Reflexive: $x \sqsubseteq x$
 - Anti-symmetric: $x \sqsubseteq y$ and $y \sqsubseteq x \Rightarrow y = x$
 - Transitive: $x \sqsubseteq y, y \sqsubseteq z \Rightarrow x \sqsubseteq z$
- Example: set of integers and \leq
- Graphical representation of poset
 - Graph in which nodes are elements of D and relation \sqsubseteq is indicated by arrows
 - Usually omit reflexive and transitive arrows for legibility
 - Not counting reflexive edges, graph is always a DAG (why?)
Another example

- Powerset of any set, ordered by \subseteq is a poset
- In the example, poset elements are $\{\}$, $\{a\}$, $\{a, b\}$, $\{a, b, c\}$, etc.
- $X \subseteq Y$ iff $X \subseteq Y$
Finite poset with least element

- Poset in which
 - Set is finite
 - There is a least element that is below all other elements in poset

- Examples
 - Set of integers ordered by \leq is not a finite poset with least element (no least element, not finite)
 - Set of natural numbers ordered by \leq has a least element (0), but not finite
 - Set of factors of 12, ordered by \leq has a least element as is finite
 - Powerset example from before is finite (how many elements?) with a least element ($\{\}$)
Domains

- “Finite poset with least element” is a mouthful, so we will abbreviate this to *domain*

- Later, we will add additional conditions to domains that are of interest to us in the context of dataflow analysis

- (Goal: what is a lattice?)
Functions on domains

• If D is a domain, we can define a function $f : D \rightarrow D$

 • Function maps each element of domain on to another element of the domain

• Example: for $D = \text{powerset of } \{a, b, c\}$

 • $f(x) = x \cup \{a\}$

 • $g(x) = x - \{a\}$

 • $h(x) = \{a\} - x$
Monotonic functions

- A function $f : D \rightarrow D$ on a domain D is *monotonic* if
 - $x \subseteq y \Rightarrow f(x) \subseteq f(y)$
- Note: this is not the same as $x \subseteq f(x)$
- This means that x is *extensive*
- Intuition: think of f as an electrical circuit mapping input to output
 - If f is monotonic, raising the input voltage raises the output voltage (or keeps it the same)
 - If f is extensive, the output voltage is always the same or more than the input voltage
Examples

- Domain D is the powerset of \{a, b, c\}
- Monotonic functions:
 - $f(x) = \{\}$ (why?)
 - $f(x) = x \cup \{a\}$
 - $f(x) = x - \{a\}$
- Not monotonic
 - $f(x) = \{a\} - x$ (why?)
- Extensivity
 - $f(x) = x \cup \{a\}$ is monotonic and extensive
 - $f(x) = x - \{a\}$ is monotonic but not extensive
 - $f(x) = \{a\} - x$ is neither
- What is a function that is extensive, but not monotonic?
Fixpoints

• Suppose \(f : D \rightarrow D \).

• A value \(x \) is a fixpoint of \(f \) if \(f(x) = x \)

• \(f \) maps \(x \) to itself

• Examples: \(D \) is a powerset of \(\{a, b, c\} \)

• Identity function: \(f(x) = x \)
 • Every element is a fixpoint

• \(f(x) = x \cup \{a\} \)
 • Every set that contains \(a \) is a fixpoint

• \(f(x) = \{a\} - x \)
 • No fixpoints
Fixpoint theorem

• One form of *Knaster-Tarski Theorem*:

 If D is a domain and $f : D \to D$ is monotonic, then f has at least one fixpoint

• More interesting consequence:

 If \bot is the least element of D, then f has a *least fixpoint*, and that fixpoint is the largest element in the chain

 $\bot, f(\bot), f(f(\bot)), f(f(f(\bot))) \ldots f^n(\bot)$

• Least fixpoint: a fixpoint of f, x such that, if y is a fixpoint of f, then $x \sqsubseteq y$
Examples

• For domain of powersets, \(\{\} \) is the least element
• For identity function, \(f^n(\{\}) \) is the chain
 \(\{\}, \{\}, \{\}, \ldots \) so least fixpoint is \(\{\} \), which is correct
• For \(f(x) = x \cup \{a\} \), we get the chain
 \(\{\}, \{a\}, \{a\}, \ldots \) so least fixpoint is \(\{a\} \), which is correct
• For \(f(x) = \{a\} - x \), function is not monotonic, so not guaranteed to have a fixpoint!
• Important observation: as soon as the chain repeats, we have found the fixpoint (why?)
Proof of fixpoint theorem

• First, prove that largest element of chain $f^n(\perp)$ is a fixpoint

• Second, prove that $f^n(\perp)$ is the least fixpoint
Solving equations

• If D is a domain and $f : D \to D$ is a monotone function on that domain, then the equation $f(x) = x$ has a least fixpoint, given by the largest element in the sequence

$$\bot, f(\bot), f(f(\bot)), f(f(f(\bot))) \ldots$$

• Proof follows directly from fixpoint theorem
Adding a top

• Now let us consider domains with an element \(\top \), such that for every point \(x \) in the domain, \(x \sqsubseteq \top \)

• New theorem: if \(D \) is a domain with a greatest element \(\top \) and \(f : D \to D \) is monotonic, then the equation \(x = f(x) \) has a greatest solution, and that solution is the smallest element in the sequence

\[\top, f(\top), f(f(\top)), \ldots \]

• Proof?
Multi-argument functions

- If D is a domain, a function $f : D \times D \rightarrow D$ is monotonic if it is monotonic in each argument when the other is held constant.

- Intuition:
 - Electrical circuit has two inputs
 - If you raise either input while holding the other constant, the output either goes up or stays the same.
Fixpoints of multi-arg functions

- Can generalize fixpoint theorem in a straightforward way

- If D is a domain and $f, g : D \times D \rightarrow D$ are monotonic, the following system of equations has a least fixpoint solution, calculated in the obvious way

 $$x = f(x, y) \text{ and } y = g(x, y)$$

- Can generalize this to more than two variables and domains with greatest elements easily
Lattices

• A bounded lattice is a partially ordered set with a \bot and \top, with two special functions for any pair of points x and y in the lattice:

 • A join: $x \sqcup y$ is the least element that is greater than x and y (also called the least upper bound)

 • A meet: $x \sqcap y$ is the greatest element that is less than x and y (also called the greatest lower bound)

• Are \sqcup and \sqcap monotonic?
More about lattices

• Bounded lattices with a finite number of elements are a special case of domains with \top (why are they not the same?)

• Systems of monotonic functions (including \sqcup and \sqcap) will have fixpoints

• But some lattices are infinite! (example: the lattice for constant propagation)

• It turns out that you can show a monotonic function will have a least fixpoint for any lattice (or domain) of finite height

• Finite height: any totally ordered subset of domain (this is called a chain) must be finite

• Why does this work?
Solving system of equations

• Consider

\[
x = f(x, y, z) \\
y = g(x, y, z) \\
z = h(x, y, z)
\]

• Obvious iterative solution: evaluate every function at every step:

\[
\bot \quad f(\bot, \bot, \bot) \quad \ldots \\
\bot \quad g(\bot, \bot, \bot) \quad \ldots \\
\bot \quad h(\bot, \bot, \bot) \quad \ldots
\]
Worklist algorithm

- Obvious point: only necessary to re-evaluate functions whose “important” inputs have changed

- Worklist algorithm
 - Initialize worklist with all equations
 - Initialize solution vector S to all \bot
 - While worklist not empty
 - Get equation from worklist
 - Re-evaluate equation based on S, update entry corresponding to lhs in S
 - Put all equations which use this lhs on their rhs in the worklist
 - Claim: the worklist algorithm for constant propagation is an instance of this approach
Mapping worklist algorithm

- Careful: the “variables” in constant propagation are not the individual variable values in a state vector. Each variable (from a fixpoint perspective) is an entire state vector – there are as many variables as there are edges in the CFG.

- Functions:
 - Program statements: eval(e, V\textsubscript{in})
 - These are called *transfer functions*
 - Need to make sure this is monotonic

- Branches
 - Propagates input state vector to output – trivially monotonic

- Merges
 - Use join or meet to combine multiple input variables – monotonic by definition
Constant propagation

• Step 1: choose lattice
 • Use constant lattice (infinite, but finite height)

• Step 2: choose direction of dataflow
 • Run forward through program

• Step 3: create monotonic transfer functions
 • If input goes from \bot to constant, output can only go up. If input goes from constant to \top, output goes to \top

• Step 4: choose confluence operator
 • What do do at merges? For constant propagation, use join