Dependence Analysis
Motivating question

• Can the loops on the right be run in parallel?
 • *i.e.*, can different processors run different iterations in parallel?

• What needs to be true for a loop to be parallelizable?
 • Iterations cannot interfere with each other

• No *dependence* between iterations

```c
for (i = 1; i < N; i++) {
    a[i] = b[i];
    c[i] = a[i - 1];
}
```

```c
for (i = 1; i < N; i++) {
    a[i] = b[i];
    c[i] = a[i] + b[i - 1];
}
```
Dependences

- A flow dependence occurs when one iteration writes a location that a later iteration reads.

```c
for (i = 1; i < N; i++) {
    a[i] = b[i];
    c[i] = a[i - 1];
}
```

<table>
<thead>
<tr>
<th>i = 1</th>
<th>i = 2</th>
<th>i = 3</th>
<th>i = 4</th>
<th>i = 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>W(a[1])</td>
<td>W(a[2])</td>
<td>W(a[3])</td>
<td>W(a[4])</td>
<td>W(a[5])</td>
</tr>
<tr>
<td>R(b[1])</td>
<td>R(b[2])</td>
<td>R(b[3])</td>
<td>R(b[4])</td>
<td>R(b[5])</td>
</tr>
<tr>
<td>W(c[1])</td>
<td>W(c[2])</td>
<td>W(c[3])</td>
<td>W(c[4])</td>
<td>W(c[5])</td>
</tr>
<tr>
<td>R(a[0])</td>
<td>R(a[1])</td>
<td>R(a[2])</td>
<td>R(a[3])</td>
<td>R(a[4])</td>
</tr>
</tbody>
</table>
Running a loop in parallel

- If there is a dependence in a loop, we cannot guarantee that the loop will run correctly in parallel
 - What if the iterations run out of order?
 - Might read from a location before the correct value was written to it
 - What if the iterations do not run in lock-step?
 - Same problem!
Other kinds of dependence

- **Anti dependence** – When an iteration *reads* a location that a later iteration *writes* (why is this a problem?)

  ```
  for (i = 1; i < N; i++) {
    a[i - 1] = b[i];
    c[i] = a[i];
  }
  ```

- **Output dependence** – When an iteration *writes* a location that a later iteration *writes* (why is this a problem?)

  ```
  for (i = 1; i < N; i++) {
    a[i] = b[i];
    a[i + 1] = c[i];
  }
  ```
Data dependence concepts

- Dependence *source* is the earlier statement (the statement at the tail of the dependence arrow)

- Dependence *sink* is the later statement (the statement at the head of the dependence arrow)

- Dependences can only go forward in time: always from an earlier iteration to a later iteration.
Using dependences

- If there are no dependences, we can parallelize a loop
 - None of the iterations interfere with each other
- Can also use dependence information to drive other optimizations
 - Loop interchange
 - Loop fusion
 - (We will discuss these later)
- Two questions:
 - How do we represent dependences in loops?
 - How do we determine if there are dependences?
Representing dependences

• Focus on flow dependences for now
• Dependences in straight line code are easy to represent:
 • One statement writes a location (variable, array location, etc.) and another reads that same location
 • Can figure this out using reaching definitions
• What do we do about loops?
 • We often care about dependences between the same statement in different iterations of the loop!

```c
for (i = 1; i < N; i++) {
    a[i + 1] = a[i] + 2
}
```
Iteration space graphs

• Represent each *dynamic* instance of a loop as a point in a graph

• Draw arrows from one point to another to represent dependences

```c
for (i = 0; i < N; i++) {
    a[i + 2] = a[i]
}
```
Iteration space graphs

- Represent each dynamic instance of a loop as a point in a graph
- Draw arrows from one point to another to represent dependences

```c
for (i = 0; i < N; i++) {
    a[i + 2] = a[i]
}
```

- Step 1: Create nodes, 1 for each iteration
 - Note: not 1 for each array location!
Iteration space graphs

- Represent each *dynamic* instance of a loop as a point in a graph

- Draw arrows from one point to another to represent dependences

```c
for (i = 0; i < N; i++) {
    a[i + 2] = a[i]
}
```

- Step 2: Determine which array elements are read and written in each iteration
Iteration space graphs

- Represent each *dynamic* instance of a loop as a point in a graph
- Draw arrows from one point to another to represent dependences

```c
for (i = 0; i < N; i++) {
    a[i + 2] = a[i]
}
```

- Step 3: Draw arrows to represent dependences
2-D iteration space graphs

- Can do the same thing for doubly-nested loops
- 2 loop counters

```java
for (i = 0; i < N; i++)
    for (j = 0; j < N; j++)
        a[i+1][j-2] = a[i][j] + 1
```

Monday, November 4, 13
Iteration space graphs

- Can also represent output and anti dependences
- Use different kinds of arrows for clarity. *E.g.*
 - for output
 - for anti

- Crucial problem: Iteration space graphs are potentially infinite representations!
- Can we represent dependences in a more compact way?
Distance and direction vectors

• Compiler researchers have devised compressed representations of dependences
 • Capture the same dependences as an iteration space graph
 • May lose precision (show more dependences than the loop actually has)

• Two types
 • Distance vectors: captures the “shape” of dependences, but not the particular source and sink
 • Direction vectors: captures the “direction” of dependences, but not the particular shape
Distance vector

• Represent each dependence arrow in an iteration space graph as a vector

• Captures the “shape” of the dependence, but loses where the dependence originates

- Distance vector for this iteration space: (2)

- Each dependence is 2 iterations forward
2-D distance vectors

- Distance vector for this graph:
 - (1, -2)
 - +1 in the i direction, -2 in the j direction

- Crucial point about distance vectors: they are always “positive”
 - First non-zero entry has to be positive
 - Dependences can’t go backwards in time
More complex example

- Can have multiple distance vectors

```cpp
for (i = 0; i < N; i++)
    for (j = 0; j < N; j++)
        a[i+1][j-2] = a[i][j] + a[i-1][j-2]
```
More complex example

- Can have multiple distance vectors

```cpp
for (i = 0; i < N; i++)
    for (j = 0; j < N; j++)
        a[i+1][j-2] = a[i][j] + a[i-1][j-2]
```

- Distance vectors
 - (1, -2)
 - (2, 0)

- Important point: order of vectors depends on order of loops, not use in arrays
Problems with distance vectors

• The preceding examples show how distance vectors can summarize all the dependences in a loop nest using just a small number of distance vectors

• Can’t always summarize as easily

• Running example:

```
for (i = 0; i < N; i++)
a[2*i] = a[i];
```

Write:
Read:
Loss of precision

- What are the distance vectors for this code?
 - (1), (2), (3), (4) ...
- Note: we have information about the length of each vector, but not about the source of each vector
- What happens if we try to reconstruct the iteration space graph?
Loss of precision

- What are the distance vectors for this code?
 - (1), (2), (3), (4) ...
- Note: we have information about the length of each vector, but not about the source of each vector
- What happens if we try to reconstruct the iteration space graph?

![Diagram showing iteration space with nodes labeled 0 to 6 and arrows indicating reads and writes to array elements a[0] to a[12].]
Direction vectors

• The whole point of distance vectors is that we want to be able to succinctly capture the dependences in a loop nest

• But in the previous example, not only did we add a lot of extra information, we still had an infinite number of distance vectors

• Idea: summarize distance vectors, and save only the direction the dependence was in

 • \((2, -1) \rightarrow (+, -)\)

 • \((0, 1) \rightarrow (0, +)\)

 • \((0, -2) \rightarrow (0, -)\)

 • (can’t happen; dependences have to be positive)

• Notation: sometimes use ‘<‘ and ‘>’ instead of ‘+’ and ‘-‘
Why use direction vectors?

- Direction vectors lose a lot of information, but do capture some useful information
 - Whether there is a dependence (anything other than a ‘0’ means there is a dependence)
 - Which dimension and direction the dependence is in
- Many times, the only information we need to determine if an optimization is legal is captured by direction vectors
 - Loop parallelization
 - Loop interchange
Loop parallelization
Loop-carried dependence

- The key concept for parallelization is the *loop carried dependence*
- A dependence that crosses loop iterations
- If there is a loop carried dependence, then that loop *cannot* be parallelized
- Some iterations of the loop depend on other iterations of the same loop
Examples

for (i = 0; i < N; i++)
 a[2*i] = a[i];

Later iterations of i loop depend on earlier iterations

for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 a[i+1][j-2] = a[i][j] + 1

Later iterations of both i and j loops depend on earlier iterations
Some subtleties

- Dependences might only be carried over one loop!

```
for (i = 0; i < N; i++)
  for (j = 0; j < N; j++)
    a[i][j+1] = a[i][j] + 1
```

- Can parallelize i loop, but not j loop
Some subtleties

• Dependences might only be carried over one loop!

```c
for (i = 0; i < N; i++)
    for (j = 0; j < N; j++)
        a[i+1][j] = a[i-1][j] + 1
```

• Can parallelize j loop, but not i loop
Direction vectors

- So how do direction vectors help?
 - If there is a non-zero entry for a loop dimension, that means that there is a loop carried dependence over that dimension
 - If an entry is zero, then that loop can be parallelized!
 - May be able to parallelize inner loop even if entry is not zero, but you have to carefully structure parallel execution
Improving parallelism

• Important point: any dependence can prevent parallelization

• Anti and output dependences are important, not just flow dependences

• But anti and output dependences can be removed by using more storage
 • Like register renaming in out-of-order processors

• In principle, all anti and output dependences can be removed, but this is difficult

• Key question: when are there flow dependences?

```
for (i = 0; i < N; i++)
a[i] = a[i + 1] + 1
```

```
for (i = 0; i < N; i++)
aa[i] = a[i + 1] + 1
```
Data Dependence Tests
Problem formulation

• Given the loop nest:

 \[
 \text{for } (i = 0; i < N; i++) \quad a[f(i)] = \ldots \\
 \ldots = a[g(i)]
 \]

• A dependence exists if there exist an integer \(i \) and an \(i' \) such that:

 • \(f(i) = g(i') \)

 • \(0 \leq i, i' < N \)

 • If \(i < i' \), write happens before read (flow dependence)

 • If \(i > i' \), write happens after read (anti dependence)
Loop normalization

- Loops that skip iterations can always be normalized to loops that don’t, so we only need to consider loops that have unit strides.

- Note: this is essentially of the reverse of linear test replacement

```c
for (i = L; i < U; i += S)
    ... a[i] ...
```

```c
for (i = 0; i < (U - L)/S; i += 1)
    ... a[S*i + L] ...
```
Diophantine equations

• An equation whose coefficients and solutions are all integers is called a *Diophantine equation*

• Our question:

\[f(i) = a_i \cdot i + b \quad g(i) = c_i \cdot i + d \]

Does \(f(i) = g(i') \) have a solution?

• \(f(i) = g(i') \Rightarrow a_i + b = c_i' + d \Rightarrow a_1^*i + a_2^*i' = a_3 \)
Solutions to Diophantine eqns

• An equation $a_1i + a_2i' = a_3$ has a solution iff $\gcd(a_1, a_2)$ evenly divides a_3

• Examples
 • $15i + 6j - 9k = 12$ has a solution ($\gcd = 3$)
 • $2i + 7j = 3$ has a solution ($\gcd = 1$)
 • $9i + 6j = 10$ has no solution ($\gcd = 3$)
Why does this work?

• Suppose g is the gcd(a, b) in \(a^*i + b^*j = c\)

• Can rewrite equation as
 \[g*(a'^*i + b'^*j) = c\]
 \[a'^*i + b'^*j = c/g\]

• \(a'\) and \(b'\) are integers, and relatively prime (gcd = 1) so by choosing \(i\) and \(j\) correctly, can produce any integer, but only integers

• Equation has a solution provided \(c/g\) is an integer
Finding the GCD

• Finding GCD with Euclid’s algorithm

• Repeat

 a = a mod b

 swap a and b

 until b is 0 (resulting a is the gcd)

• Why? If g divides a and b, then g divides a mod b

gcd(27, 12): a = 27, b = 15
a = 27 mod 15 = 12
a = 15 mod 12 = 3
a = 12 mod 3 = 0
gcd = 3
Downsides to GCD test

• If $f(i) = g(i')$ fails the GCD test, then there is no i, i' that can produce a dependence \rightarrow loop has no dependences

• If $f(i) = g(i')$, there might be a dependence, but might not

• i and i' that satisfy equation might fall outside bounds

• Loop may be parallelizable, but cannot tell

• Unfortunately, most loops have $\text{gcd}(a, b) = 1$, which divides everything

• Other optimizations (loop interchange) can tolerate dependences in certain situations
Other dependence tests

- GCD test: doesn’t account for loop bounds, does not provide useful information in many cases
- Banerjee test (Utpal Banerjee): accurate test, takes directions and loop bounds into account
- Omega test (William Pugh): even more accurate test, precise but can be very slow
- Range test (Blume and Eigenmann): works for non-linear subscripts
- Compilers tend to perform simple tests and only perform more complex tests if they cannot prove non-existence of dependence
Other loop optimizations
Loop interchange

- We’ve seen this one before
- Interchange doubly-nested loop to
 - Improve locality
 - Improve parallelism
 - Move parallel loop to outer loop (coarse grained parallelism)
Loop interchange legality

- We noted that loop interchange is not always legal, because it reorders a computation
- Can we use dependences to determine legality?
Loop interchange dependences

- Consider interchanging the following loop, with the dependence graph to the right:

```plaintext
for (i = 0; i < N; i++)
  for (j = 0; j < N; j++)
    a[i+1][j+2] = a[i][j] + 1
```

- Distance vector \((1, 2)\)
- Direction vector \((+, +)\)
Loop interchange dependences

- Consider interchanging the following loop, with the dependence graph to the right:

```plaintext
for (j = 0; j < N; j++)
    for (i = 0; i < N; i++)
        a[i+1][j+2] = a[i][j] + 1
```

- Distance vector (2, 1)
- Direction vector (+, +)
- Distance vector gets swapped!
Loop interchange legality

- Interchanging two loops swaps the order of their entries in distance/direction vectors
 - $(0, +) \rightarrow (+, 0)$
 - $(+, 0) \rightarrow (0, +)$
- But remember, we can’t have backwards dependences
 - $(+, -) \rightarrow (-, +)$
- Illegal dependence \rightarrow Loop interchange not legal!
Loop interchange dependences

- Example of illegal interchange:

```c
for (i = 0; i < N; i++)
  for (j = 0; j < N; j++)
    a[i+1][j-2] = a[i][j] + 1
```

```
0,4  1,4  2,4  3,4  4,4
0,3  1,3  2,3  3,3  4,3
0,2  1,2  2,2  3,2  4,2
0,1  1,1  2,1  3,1  4,1
0,0  1,0  2,0  3,0  4,0
```

```
\text{i}
```

```
\text{j}
```
Loop interchange dependences

- Example of illegal interchange:

```c
for (j = 0; j < N; j++)
    for (i = 0; i < N; i++)
        a[i+1][j-2] = a[i][j] + 1
```

- Flow dependences turned into anti-dependences
- Result of computation will change!
Loop fusion/distribution

- Loop fusion: combining two loops into a single loop
 - Improves locality, parallelism
- Loop distribution: splitting a single loop into two loops
 - Can increase parallelism (turn a non-parallelizable loop into a parallelizable loop)
- Legal as long as optimization maintains dependences
 - Every dependence in the original loop should have a dependence in the optimized loop
 - Optimized loop should not introduce new dependences
Fusion/distribution example

• Code 1:
  ```
  for (i = 0; i < N; i++)
    a[i - 1] = b[i]
  
  for (j = 0; j < N; j++)
    c[j] = a[j]
  ```

• Dependence graph
 ![Dependence graph for Code 1]

 • All red iterations finish before blue iterations \(\rightarrow\) flow dependence

• Code 2:
  ```
  for (i = 0; i < N; i++)
    a[i - 1] = b[i]

  c[i] = a[i]
  ```

• Dependence graph
 ![Dependence graph for Code 2]

 • i iterations finish before i+1 iterations \(\rightarrow\) flow dependence now an anti dependence!
Fusion/distribution utility

\[
\text{for } (i = 0; i < N; i++) \\
da[i] = a[i - 1]
\]

\[
\text{for } (j = 0; j < N; j++) \\
b[j] = a[j]
\]

- Fusion and distribution both legal
- Right code has better locality, but cannot be parallelized due to loop carried dependences
- Left code has worse locality, but blue loop can be parallelized