Dependence Analysis

ooooooooooooooooooo

Motivating question

® Can the loops on the right
be run in parallel?

® je., can different
processors run
different iterations in
parallel?

® What needs to be true for
a loop to be parallelizable?

® |terations cannot
interfere with each
other

® No dependence
between iterations

for (1 =1; 1 < N; 1++) {

}

for (1

}

al1]
c[1]

ali] =

c[1]

[1];
al[i1 - 1];
1; 1 < N; 1++) {
[1];
ali] + b[1 - 11;

Monday, November 4, 13

Dependences

® A flow dependence occurs when one iteration writes a
location that a later iteration reads

WCa[1]
RCb[1]
WCc[1]
RCal@]

S Fr R -

for (i = 1; i < N; i++) {
ali] = b[1];
c[i] = a[i - 1];
}
1 =2 1 =3 1 =4
), WCal[2]1)
) RCb[2]1) RCb[31) RCb[4]1)
) WCcl[21) WCc[31) WCc[41)
) RCa[1]) RCa[2])

\

WCa[5]
RCbLS]
WCc[5]

Monday, November 4, 13

Running a loop in parallel

® |[f there is a dependence in a loop, we cannot guarantee that
the loop will run correctly in parallel

® What if the iterations run out of order?

® Might read from a location before the correct value
was written to it

® What if the iterations do not run in lock-step?

® Same problem!

Monday, November 4, 13

Other kinds of dependence

® Anti dependence —When an iteration reads a location that a
later iteration writes (why is this a problem?)

for (1 =1; 1 < N; 1++) {
alt - 1] = b[1];
c[i] = a[1];

}

® (Output dependence —When an iteration writes a location
that a later iteration writes (why is this a problem?)

for (i =1; 1 < N; i++) {
a[i] = b[1i];
alt + 1] = c[1];

}

Monday, November 4, 13

Data dependence concepts

® Dependence source is the earlier statement (the statement
at the tail of the dependence arrow)

® Dependence sink is the later statement (the statement at
the head of the dependence arrow)

1 =1 1 =2 1 =3 1 =4 1 =5
WCal

WCal[1]) [2]) WCal[5_
RCb[1]1) RCb[2]) RCb[3]1) RCb[4]) RCb[5]
WCc[1]) WCc[2]) WCc[31) WCc[4]1) W(c[5.
R(a[@]) RCa[1]) RCa[2])

® Dependences can only go forward in time: always from an
earlier iteration to a later iteration.

A P

Monday, November 4, 13

Using dependences

® |[f there are no dependences, we can parallelize a loop
® None of the iterations interfere with each other

® Can also use dependence information to drive other
optimizations

® | oop interchange
® | oop fusion
® (We will discuss these later)
® Two questions:
® How do we represent dependences in loops!?

® How do we determine if there are dependences!?

Monday, November 4, 13

Representing dependences

® Focus on flow dependences for now
® Dependences in straight line code are easy to represent:

® One statement writes a location (variable, array
location, etc.) and another reads that same location

® (Can figure this out using reaching definitions
® What do we do about loops!?

® We often care about dependences between the same
statement in different iterations of the loop!

for (1 =1; 1 < N; 1++) {
al[it + 1] = a[1] + 2
¥

Monday, November 4, 13

Iteration space graphs

® Represent each dynamic instance of a loop as a pointin a
graph

® Draw arrows from one point to another to represent
dependences
for (1 =0; 1 < N; 1++) {
a1 + 2] = a[1]
¥

Monday, November 4, 13

Iteration space graphs

® Represent each dynamic instance of a loop as a pointin a
graph

® Draw arrows from one point to another to represent
dependences

for (1 =0; i < N; i++) {
alit + 2] = a[1]
}

® Step |:Create nodes, | for each iteration

® Note:not | for each array location!

O O 0 0 O O

Monday, November 4, 13

Iteration space graphs

® Represent each dynamic instance of a loop as a pointin a
graph

® Draw arrows from one point to another to represent
dependences
for (1 =0; 1 < N; 1++) {
alit + 2] = a[1]
¥

® Step 2: Determine which array elements are read and
written in each iteration

© O 0 0 O O

R: a[@] R: a[1] R: a[2] R: a[3] R: a[4] R: a[5]
W: a[2] W: a[3] W: a[4] W: a[5] W: al[6] W: a[7]

Monday, November 4, 13

Iteration space graphs

® Represent each dynamic instance of a loop as a pointin a
graph

® Draw arrows from one point to another to represent
dependences

for (1 =0; i < N; i++) {
alit + 2] = a[1]
}

® Step 3: Draw arrows to represent dependences

OOOIOIROEN0

R: a[@] R: a[1] R: a[2] R: a[3] R: a[4] R: a[5]
W: a[2] W: a[3] W: a[4] W: a[5] W: al[6] W: a[7]

Monday, November 4, 13

2-D iteration space graphs

® Can do the same thing
for doubly-nested loops
® 2 |loop counters
for (1 =0; 1 < N; 1++)
for (J = 0; J < N; J++)
ali+1][J-2] = a[1][]] +

j| ——

Monday, November 4, 13

Iteration space graphs

® C(Can also represent output and anti dependences

® Use different kinds of arrows for clarity. E.g.
¢ —O— for output
o —— for anti

® Crucial problem: Iteration space graphs are potentially
infinite representations!

® Can we represent dependences in a more compact way!?

Monday, November 4, 13

Distance and direction vectors

® Compiler researchers have devised compressed
representations of dependences

® (Capture the same dependences as an iteration space
graph

® May lose precision (show more dependences than the
loop actually has)

® Two types

® Distance vectors: captures the “shape” of dependences,
but not the particular source and sink

® Direction vectors: captures the “direction” of
dependences, but not the particular shape

Monday, November 4, 13

Distance vector

® Represent each dependence arrow in an iteration space
graph as a vector

® (Captures the “shape” of the dependence, but loses where
the dependence originates

OO OIOIROEN0

R: a[0] R: a[1] R: a[2] R: a[3] R: a[4] R: a[5]
W: a[2] W: a[3] W: a[4] W: a[5] W: a[o6] W: al[7]

® Distance vector for this iteration space: (2)

® Each dependence is 2 iterations forward

Monday, November 4, 13

2-D distance vectors

® Distance vector for this

graph: @ @
* (I,-2)

® +| in the i direction, -2
in the j direction T

® Crucial point about
distance vectors: they are |
always “positive”

=

®
®
®

® First non-zero entry
has to be positive

®
®
19

® Dependences can’t go
backwards in time

®
®

Monday, November 4, 13

More complex example

® Can have multiple
distance vectors

for (1 =0; 1 < N; 1++)

for (3 =0; 3 < N; J++)
al1+1]1[3-2] = a[1][3] +
al1-11[3-2]

® 6 6 6
O ©® 6
® 6 O
® 6 ©

Monday, November 4, 13

More complex example

® Can have multiple
distance vectors

for (1 =0; i < N; i++)
for (3 =0; 3 < N; J++)
al1+1][3-2] = a[1][3] +

a[1-1]1[3-2]
® Distance vectors
* (I,-2)
* (2,0)

® |mportant point: order of
vectors depends on order
of loops, not use in arrays

(XY

R

QEE
$ °:§::t"

QD

Monday, November 4, 13

Problems with distance vectors

® The preceding examples show how distance vectors can
summarize all the dependences in a loop nest using just a
small number of distance vectors

® (Can’t always summarize as easily

® Running example:

for (1 =0; 1 < N; 1++)
a[2*1] = a[1];

© O O o0 00

Write: a[0] al2] af4] a[6] a[8] a[10] a[12]
Read: al0] al1] al2] a[3] al4] a[5] a[6]

Monday, November 4, 13

Loss of precision

® What are the distance vectors for this code?

* (1)@2),03)H#) ..

® Note: we have information about the length of each vector,
but not about the source of each vector

® What happens if we try to reconstruct the iteration
space graph!?

© O O o0 00

Write: a[0] al2] af4] a[6] a[8] a[10] a[12]
Read: al0] al1] al2] a[3] al4] a[5] a[6]

Monday, November 4, 13

Loss of precision

® What are the distance vectors for this code?

* (1)@2),03)H#) ..

® Note: we have information about the length of each vector,
but not about the source of each vector

® What happens if we try to reconstruct the iteration
space graph!?

Write: a[0] al2] af4] a[6] a[8] a[10] a[12]
Read: al0] a[1] al2] a[3] al4] a[5] a[6]

Monday, November 4, 13

Direction vectors

® The whole point of distance vectors is that we want to be able to
succinctly capture the dependences in a loop nest

® But in the previous example, not only did we add a lot of extra
information, we still had an infinite number of distance vectors

® |dea: summarize distance vectors, and save only the direction the
dependence was in

¢ 2-1)= ()
¢ (0,1)~(0,+)
¢ (0,2) = (0,)

® (can’t happen; dependences have to be positive)

® Notation: sometimes use ‘<‘ and >’ instead of ‘+’ and ~

Monday, November 4, 13

Why use direction vectors!?

® Direction vectors lose a lot of information, but do capture
some useful information

® Whether there is a dependence (anything other than a
‘0’ means there is a dependence)

® Which dimension and direction the dependence is in

® Many times, the only information we need to determine if
an optimization is legal is captured by direction vectors

® Loop parallelization

® |oop interchange

Monday, November 4, 13

Loop parallelization

ooooooooooooooooooo

Loop-carried dependence

® The key concept for parallelization is the loop carried
dependence

® A dependence that crosses loop iterations

® |[f there is a loop carried dependence, then that loop cannot
be parallelized

® Some iterations of the loop depend on other iterations
of the same loop

Monday, November 4, 13

Examples

for (1
al 2*1

;1 < N; 1++)

ali];

e |
I

for (1 = 0; i < N; i++)
for (= 0; 7 < N; J++)
al[1+1][j-2] = a[1][3] + 1

Later iterations of i loop
depend on earlier iterations

Later iterations of both i and
j loops depend on earlier iterations

Monday, November 4, 13

Some subtleties

® Dependences might only o
be carried over one loop!

(19
OO

for (1 =0; 1 < N; 1++)
(12

for (j = @; j < N; j++) (02)

ali][j+1] = a[iI[3] + 1 ‘
O

® Can parallelize i loop, but
not j loop

O—0O—

Monday, November 4, 13

O—O—E—0O—C
O—O—EO—O—C
O—O—E—O—C

Some subtleties

® Dependences might only
be carried over one loop!

i

for (1 =0; 1 < N; 1++)
for (j = 0; j < N; j++)
ali+1]1[J] = a[1-1][3] + 1

® Can parallelize j loop, but
not i loop

Monday, November 4, 13

Direction vectors

® So how do direction vectors help!?

® |[f there is a non-zero entry for a loop dimension, that
means that there is a loop carried dependence over that

dimension

® |[f an entry is zero, then that loop can be parallelized!

® May be able to parallelize inner loop even if entry is not
zero, but you have to carefully structure parallel execution

Monday, November 4, 13

Improving parallelism

® Important point: any
dependence can prevent
parallelization

® Anti and output dependences
are important, not just flow
dependences for (i

O; 1 < N; 1++)
e But anti and output al[i] = a[1 + 1] + 1
dependences can be removed
by using more storage

® Like register renaming in for (1 0; 1 < N; i+4)
out-of-order processors aa[i] = a[1 +1] + 1
® |n principle, all anti and output

dependences can be removed,
but this is difficult

e [Key question: when are there
flow dependences!?

Monday, November 4, 13

Data Dependence Tests

ooooooooooooooooooo

Problem formulation

® Given the loop nest:

for (1 = 0; i < N; i++)
alf(1)] = ...
. = alg(1)]

® A dependence exists if there exist an integer i and an i’ such
that:

* f(i) = g(i)
® 0<ii <N
® |[fi<i,write happens before read (flow dependence)

® |[fi> i, write happens after read (anti dependence)

Monday, November 4, 13

Loop normalization

® [oops that skip iterations can always be normalized to loops
that don’t, so we only need to consider loops that have unit
strides

® Note: this is essentially of the reverse of linear test
replacement

for (1 =L; 1 <U; 1 +=05)
ali] ...

\4

for (i =0; i < (U - L)/S; i += 1)
Ca[S*io+ L] ...

Monday, November 4, 13

Diophantine equations

® An equation whose coefficients and solutions are all
integers is called a Diophantine equation

® Our question:
fi) =a*i+b g(i)=c*i+d
Does f(i) = g(i’) have a solution?

o f(i)=g() =ai+b=c’+d=a/+a" = a3

Monday, November 4, 13

Solutions to Diophantine eqgns

® An equation a/*i + ay*i’ = a3 has a solution iff gcd(ai, a2)
evenly divides a3

® Examples
® |5%i + 6% - 9%k = 12 has a solution (gcd = 3)
® 2% + 7% = 3 has a solution (gcd = |)

® 9% + 6™ = 10 has no solution (gcd = 3)

Monday, November 4, 13

Why does this work!?

® Suppose g is the gcd(a, b) in a*i + b*j = ¢
® Can rewrite equation as

g + b)) = c

a *i+b *j=clg

® 2a’and b’ are integers, and relatively prime (gcd = |) so by
choosing i and j correctly, can produce any integer, but only
integers

® FEquation has a solution provided c/g is an integer

Monday, November 4, 13

Finding the GCD

® Finding GCD with Euclid’s
algorithm

Repeat
a=amodb
swap a and b

until b is 0 (resulting a
is the gcd)

® Why! If g divides a and b,
then g divides a mod b

ged(27,12):a=27,b=15
a=27mod I5=12
a=I|5modI2=3
a=12mod3=0

ged =3

Monday, November 4, 13

Downsides to GCD test

o [ff(i) = g(i’) fails the GCD test, then there is no i, i’ that can
produce a dependence — loop has no dependences

® |[f f(i) = g(i’), there might be a dependence, but might not
® jand i that satisfy equation might fall outside bounds
® |oop may be parallelizable, but cannot tell

® Unfortunately, most loops have gcd(a, b) = I, which divides
everything

® Other optimizations (loop interchange) can tolerate
dependences in certain situations

Monday, November 4, 13

Other dependence tests

® GCD test: doesn’t account for loop bounds, does not
provide useful information in many cases

® Banerjee test (Utpal Banerjee): accurate test, takes
directions and loop bounds into account

® Omega test (William Pugh): even more accurate test,
precise but can be very slow

® Range test (Blume and Eigenmann): works for non-linear
subscripts

® Compilers tend to perform simple tests and only perform
more complex tests if they cannot prove non-existence of
dependence

Monday, November 4, 13

Other loop
optimizations

ooooooooooooooooooo

Loop interchange

® We've seen this one before

® Interchange doubly-nested loop to
® |mprove locality
® |mprove parallelism

® Move parallel loop to outer loop (coarse grained
parallelism)

Monday, November 4, 13

Loop interchange legality

® We noted that loop interchange is not always legal, because
it reorders a computation

® Can we use dependences to determine legality?

Monday, November 4, 13

Loop interchange dependences

® Consider interchanging
the following loop, with
the dependence graph to
the right:

e{e
S
SN

for (1 =0; 1 < N; 1++)
for (J = 0; 7 < N; J++)
ali+1][3+2] = a[1][3] + 1

® Distance vector (I, 2)

® Direction vector (+, +)

'«
®

Monday, November 4, 13

Loop interchange dependences

® Consider interchanging
the following loop, with
the dependence graph to
the right:

for (3 = 0; J < N; j++)
for (1 = 0; 1 < N; 1++)
ali+1][3+2] = a[1][3] + 1

® Distance vector (2, |)

® Direction vector (+, +)

® Distance vector gets
swapped!

e

R

|

®

1

Monday, November 4, 13

Loop interchange legality

® |nterchanging two loops swaps the order of their entries in
distance/direction vectors

* (0,+) = (+0)
* (+0)—~(0+)

® But remember, we can’t have backwards dependences
* ()2 (=)

® |llegal dependence — Loop interchange not legal!

Monday, November 4, 13

Loop interchange dependences

® Example of illegal
interchange:

S @D O @ @
for (1 =0; 1 < N; 1++)

for (J = 0; 3 < N; J++) (53)
al1+1]1[3-2] = a[1][3] + 1 T

j

O\W\®\®
® W ®

| ——

=
-

Monday, November 4, 13

Loop interchange dependences

® Example of illegal

interchange:
. . | O CN®
for (J =0; J < N; J++)
for (1 =0; 1 < N; 1++) H)L)L) @
ali+11[3-2] = alil[3] + 1 .\\
la_oneN0 e
® Flow dependences turned |
into anti-dependences oW oOROWOERD®
® Result of computation ‘\
will change! G (o

j—>

Monday, November 4, 13

Loop fusion/distribution

® |oop fusion: combining two loops into a single loop
® Improves locality, parallelism
® | oop distribution: splitting a single loop into two loops

® Can increase parallelism (turn a non-parallelizable loop
into a parallelizable loop)

® |egal as long as optimization maintains dependences

® Every dependence in the original loop should have a
dependence in the optimized loop

® Optimized loop should not introduce new dependences

Monday, November 4, 13

Fusion/distribution example

® Code I: ® Code 2:
for (1 =0; 1 < N; 1++)
al[i - 1] = b[1] for (1 =0; 1 < N; 1++)
ali - 1] = b[1]
for (3 =0; 7 < N; J++) c[1] = a[1]
c[j] = alj]
® Dependence graph ® Dependence graph
O@AII rga iterationsCf?\ish @ ® | iterations finish before rgl>
before blue iterations — iterations — flow dependence
flow dependence now an anti dependence!

Monday, November 4, 13

Fusion/distribution utility

for (1 =0; 1 < N; 1++) Fusion

ali] = a[1 - 1] > for (i = 0; 1 < N; i++)
al[i]l = a[i - 1]
for (J =0; J < N; J++) Qistribution b[i] = a[i]
b[j] = a[7]

® Fusion and distribution both legal

® Right code has better locality, but cannot be parallelized
due to loop carried dependences

® |eft code has worse locality, but blue loop can be
parallelized

Monday, November 4, 13

