Dependence Analysis

Motivating question

- Can the loops on the right be run in parallel?
 - i.e., can different processors run different iterations in parallel?
- What needs to be true for a loop to be parallelizable?
 - Iterations cannot interfere with each other
 - No dependence between iterations

for (i = 1; i < N; i++) {
 a[i] = b[i];
 c[i] = a[i - 1];
}

for (i = 1; i < N; i++) {
 a[i] = b[i];
 c[i] = a[i] + b[i - 1];
}

Running a loop in parallel

- If there is a dependence in a loop, we cannot guarantee that the loop will run correctly in parallel
 - What if the iterations run out of order?
 - Might read from a location before the correct value was written to it
 - What if the iterations do not run in lock-step?
 - Same problem!

Dependences

- A flow dependence occurs when one iteration writes a location that a later iteration reads

\[
\begin{align*}
 &i = 1 & W(a[1]) & R(b[1]) & W(c[1]) & R(a[0]) \\
 &i = 2 & W(a[2]) & R(b[2]) & W(c[2]) & R(a[1]) \\
 &i = 3 & W(a[3]) & R(b[3]) & W(c[3]) & R(a[2]) \\
 &i = 4 & W(a[4]) & R(b[4]) & W(c[4]) & R(a[3]) \\
 &i = 5 & W(a[5]) & R(b[5]) & W(c[5]) & R(a[4])
\end{align*}
\]

Other kinds of dependence

- Anti dependence – When an iteration reads a location that a later iteration writes

\[
\begin{align*}
 &i = 1 & W(a[1]) & R(b[1]) & W(c[1]) & R(a[0]) \\
 &i = 2 & W(a[2]) & R(b[2]) & W(c[2]) & R(a[1]) \\
 &i = 3 & W(a[3]) & R(b[3]) & W(c[3]) & R(a[2]) \\
 &i = 4 & W(a[4]) & R(b[4]) & W(c[4]) & R(a[3]) \\
 &i = 5 & W(a[5]) & R(b[5]) & W(c[5]) & R(a[4])
\end{align*}
\]

Data dependence concepts

- Dependence source is the earlier statement (the statement at the tail of the dependence arrow)
- Dependence sink is the later statement (the statement at the head of the dependence arrow)

\[
\begin{align*}
 &i = 1 & W(a[1]) & R(b[1]) & W(c[1]) & R(a[0]) \\
 &i = 2 & W(a[2]) & R(b[2]) & W(c[2]) & R(a[1]) \\
 &i = 3 & W(a[3]) & R(b[3]) & W(c[3]) & R(a[2]) \\
 &i = 4 & W(a[4]) & R(b[4]) & W(c[4]) & R(a[3]) \\
 &i = 5 & W(a[5]) & R(b[5]) & W(c[5]) & R(a[4])
\end{align*}
\]

• Dependences can only go forward in time: always from an earlier iteration to a later iteration.
Using dependences

• If there are no dependences, we can parallelize a loop
 • None of the iterations interfere with each other
 • Can also use dependence information to drive other optimizations
 • Loop interchange
 • Loop fusion
 • (We will discuss these later)
• Two questions:
 • How do we represent dependences in loops?
 • How do we determine if there are dependences?

Representing dependences

• Focus on flow dependences for now
• Dependences in straight line code are easy to represent:
 • One statement writes a location (variable, array location, etc.) and another reads that same location
 • Can figure this out using reaching definitions
• What do we do about loops?
 • We often care about dependences between the same statement in different iterations of the loop!

```c
for (i = 1; i < N; i++) {
  a[i + 1] = a[i] + 2
}
```

Iteration space graphs

• Represent each dynamic instance of a loop as a point in a graph
• Draw arrows from one point to another to represent dependences

```c
for (i = 0; i < N; i++) {
  a[i + 2] = a[i]
}
```

• Step 1: Create nodes, 1 for each iteration
 • Note: not 1 for each array location!

Iteration space graphs

• Represent each dynamic instance of a loop as a point in a graph
• Draw arrows from one point to another to represent dependences

```c
for (i = 0; i < N; i++) {
  a[i + 2] = a[i]
}
```

• Step 2: Determine which array elements are read and written in each iteration

Iteration space graphs

• Represent each dynamic instance of a loop as a point in a graph
• Draw arrows from one point to another to represent dependences

```c
for (i = 0; i < N; i++) {
  a[i + 2] = a[i]
}
```

• Step 3: Draw arrows to represent dependences
2-D iteration space graphs

- Can do the same thing for doubly-nested loops
- 2 loop counters

```c
for (i = 0; i < N; i++)
    for (j = 0; j < N; j++)
        a[i+1][j-2] = a[i][j] + 1
```

Iteration space graphs

- Can also represent output and anti dependences
 - Use different kinds of arrows for clarity. E.g.
 - for output
 - for anti

- Crucial problem: Iteration space graphs are potentially infinite representations!
- Can we represent dependences in a more compact way?

Distance and direction vectors

- Compiler researchers have devised compressed representations of dependences
- Capture the same dependences as an iteration space graph
- May lose precision (show more dependences than the loop actually has)
- Two types
 - Distance vectors: captures the “shape” of dependences, but not the particular source and sink
 - Direction vectors: captures the “direction” of dependences, but not the particular shape

Distance vector

- Represent each dependence arrow in an iteration space graph as a vector
- Captures the “shape” of the dependence, but loses where the dependence originates

```plaintext
0       1       2       3       4
```

- Distance vector for this iteration space: (2)
- Each dependence is 2 iterations forward

2-D distance vectors

- Distance vector for this graph:
 - (1, -2)
 - +1 in the i direction, -2 in the j direction
- Crucial point about distance vectors: they are always “positive”
- First non-zero entry has to be positive
- Dependences can’t go backwards in time

More complex example

- Can have multiple distance vectors

```c
for (i = 0; i < N; i++)
    for (j = 0; j < N; j++)
        a[i+1][j-2] = a[i][j] + 1 + a[i-1][j-2]
```
More complex example

- Can have multiple distance vectors

```c
for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
a[i+1][j-2] = a[i][j] + a[i-1][j-2]
```

- Distance vectors
 - (1,-2)
 - (2,0)
- Important point: order of vectors depends on order of loops, not use in arrays

Problems with distance vectors

- The preceding examples show how distance vectors can summarize all the dependences in a loop nest using just a small number of distance vectors
- Can't always summarize as easily
- Running example:

```c
for (i = 0; i < N; i++)
a[2*i] = a[i];
```

Loss of precision

- What are the distance vectors for this code?
 - (1), (2), (3), (4) ...
- Note: we have information about the length of each vector, but not about the source of each vector
- What happens if we try to reconstruct the iteration space graph?

Direction vectors

- The whole point of distance vectors is that we want to be able to succinctly capture the dependences in a loop nest
 - But in the previous example, not only did we add a lot of extra information, we still had an infinite number of distance vectors
 - Idea: summarize distance vectors, and save only the direction the dependence was in
 - (2,-1) → (+, –)
 - (0, 1) → (0, +)
 - (0,-2) → (0, –)
 - (can't happen; dependences have to be positive)
 - Notation: sometimes use '<' and '>' instead of '+' and '-'
Loop parallelization

Loop-carried dependence

- The key concept for parallelization is the *loop carried dependence*
- A dependence that crosses loop iterations
- If there is a loop carried dependence, then that loop cannot be parallelized
- Some iterations of the loop depend on other iterations of the same loop

Examples

```c
for (i = 0; i < N; i++)
a[2*i] = a[i];
```

Later iterations of i loop depend on earlier iterations

```c
for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
a[i+1][j-2] = a[i][j] + 1
```

Later iterations of both i and j loops depend on earlier iterations

Some subtleties

- Dependences might only be carried over one loop!

```c
for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
a[i][j+1] = a[i][j] + 1
```

- Can parallelize i loop, but not j loop

Direction vectors

- So how do direction vectors help?
 - If there is a non-zero entry for a loop dimension, that means that there is a loop carried dependence over that dimension
 - If an entry is zero, then that loop can be parallelized!
 - May be able to parallelize inner loop even if entry is not zero, but you have to carefully structure parallel execution
Improving parallelism

• Important point: any dependence can prevent parallelization
• Anti and output dependences are important, not just flow dependences
• But anti and output dependences can be removed by using more storage
 • Like register renaming in out-of-order processors
• In principle, all anti and output dependences can be removed, but this is difficult
• Key question: when are there flow dependences?

Data Dependence Tests

```
for (i = 0; i < N; i++)
a[i] = a[i + 1] + 1
```

Problem formulation

• Given the loop nest:
  ```
  for (i = 0; i < N; i++)
a[f(i)] = ... 
... = a[g(i)]
  ```
• A dependence exists if there exist an integer i and an i' such that:
 • f(i) = g(i')
 • 0 ≤ i, i' < N
 • If i < i', write happens before read (flow dependence)
 • If i > i', write happens after read (anti dependence)

Loop normalization

• Loops that skip iterations can always be normalized to loops that don’t, so we only need to consider loops that have unit strides
• Note: this is essentially the reverse of linear test replacement
  ```
  for (i = 0; i < (U - L)/S; i += 1)
  ... a[S*i + L] ...
  ```

Diophantine equations

• An equation whose coefficients and solutions are all integers is called a Diophantine equation
• Our question:
  ```
f(i) = a*i + b
g(i) = c*i + d
Does f(i) = g(i) have a solution?
```
• f(i) = g(i') ⇒ ai + b = ci' + d ⇒ a.i + a2i' = a3

Solutions to Diophantine eqns

• An equation a1i + a2i' = a3 has a solution if gcd(a1, a2) evenly divides a3
• Examples
 • 15i + 6i' - 9k = 12 has a solution (gcd = 3)
 • 2i + 7i' = 3 has a solution (gcd = 1)
 • 9i + 6i' = 10 has no solution (gcd = 3)
Why does this work?

- Suppose \(g \) is the \(\gcd(a, b) \) in \(a^i + b^j = c \)
- Can rewrite equation as
 \[g(a'\cdot i + b'\cdot j) = c \]
 \[a' \cdot i + b' \cdot j = c/g \]
- \(a' \) and \(b' \) are integers, and relatively prime (\(\gcd = 1 \)) so by choosing \(i \) and \(j \) correctly, can produce any integer, but only integers
- Equation has a solution provided \(c/g \) is an integer

Finding the GCD

- Finding GCD with Euclid’s algorithm
 \[\text{gcd}(27, 12); a = 27, b = 15 \]
 \[a = a \mod b \]
 \[\text{swap} \ a \text{ and } b \]
 \[\text{until } b = 0 \] (resulting \(a \) is the \(\gcd \))
- Why? If \(g \) divides \(a \) and \(b \), then \(g \) divides \(a \mod b \)

Downsides to GCD test

- If \(f(i) = g(i') \) fails the GCD test, then there is no \(i, i' \) that can produce a dependence → loop has no dependences
- If \(f(i) = g(i') \), there might be a dependence, but might not
 - \(i \) and \(i' \) that satisfy equation might fall outside bounds
 - Loop may be parallelizable, but cannot tell
- Unfortunately, most loops have \(\gcd(a, b) = 1 \), which divides everything
- Other optimizations (loop interchange) can tolerate dependences in certain situations

Other dependence tests

- GCD test: doesn’t account for loop bounds, does not provide useful information in many cases
- Banerjee test (Utpal Banerjee): accurate test, takes directions and loop bounds into account
- Omega test (William Pugh): even more accurate test, precise but can be very slow
- Range test (Blume and Eigenmann): works for non-linear subscripts
- Compilers tend to perform simple tests and only perform more complex tests if they cannot prove non-existence of dependence

Other loop optimizations

- Loop interchange
 - We’ve seen this one before
 - Interchange doubly-nested loop to
 - Improve locality
 - Improve parallelism
 - Move parallel loop to outer loop (coarse grained parallelism)
Loop interchange legality

- We noted that loop interchange is not always legal, because it reorders a computation
- Can we use dependences to determine legality?

Loop interchange dependences

- Consider interchanging the following loop, with the dependence graph to the right:

 \[
 \begin{align*}
 \text{for } (i = 0; i < N; i++) & \quad \text{for } (j = 0; j < N; j++) \\
 a[i+1][j+2] &= a[i][j] + 1
 \end{align*}
 \]

 - Distance vector (2, 1)
 - Direction vector (+, +)

 - Distance vector gets swapped!

Loop interchange legality

- Interchanging two loops swaps the order of their entries in distance/direction vectors
 - \((0, +) \rightarrow (+, 0)\)
 - \((+, 0) \rightarrow (0, +)\)

- But remember, we can’t have backwards dependences
 - \((+, –) \rightarrow (–, +)\)
 - Illegal dependence \(\rightarrow\) Loop interchange not legal!

Loop interchange legality

- Flow dependences turned into anti-dependences
- Result of computation will change!
Loop fusion/distribution

- Loop fusion: combining two loops into a single loop
- Improves locality, parallelism
- Loop distribution: splitting a single loop into two loops
- Can increase parallelism (turn a non-parallelizable loop into a parallelizable loop)
- Legal as long as optimization maintains dependences
- Every dependence in the original loop should have a dependence in the optimized loop
- Optimized loop should not introduce new dependences

Monday, November 4, 13

Fusion/distribution example

- Code 1:
 for (i = 0; i < N; i++)
 a[i - 1] = b[i]
 for (j = 0; j < N; j++)
 c[j] = a[j]

 Dependence graph
 ● All red iterations finish before blue iterations → flow dependence

- Code 2:
 for (i = 0; i < N; i++)
 a[i - 1] = b[i]
 c[i] = a[i]

 Dependence graph
 ● i iterations finish before i+1 iterations → flow dependence now an anti dependence!

Fusion/distribution utility

for (i = 0; i < N; i++) Fusion
a[i] = a[i - 1] → for (i = 0; i < N; i++)
a[i] = a[i - 1]

for (j = 0; j < N; j++) Distribution
b[j] = a[j] → b[i] = a[i]

- Fusion and distribution both legal
- Right code has better locality, but cannot be parallelized due to loop carried dependences
- Left code has worse locality, but blue loop can be parallelized

Monday, November 4, 13