Control flow graphs and loop optimizations
Agenda

- Building control flow graphs
- Low level loop optimizations
 - Code motion
 - Strength reduction
 - Unrolling
- High level loop optimizations
 - Loop fusion
 - Loop interchange
 - Loop tiling
Moving beyond basic blocks

• Up until now, we have focused on single basic blocks
• What do we do if we want to consider larger units of computation
 • Whole procedures?
 • Whole program?
• Idea: capture control flow of a program
 • How control transfers between basic blocks due to:
 • Conditionals
 • Loops
Representation

- Use standard three-address code
- Jump targets are labeled
- Also label beginning/end of functions
- Want to keep track of targets of jump statements
 - Any statement whose execution may immediately follow execution of jump statement
 - *Explicit* targets: targets mentioned in jump statement
 - *Implicit* targets: statements that follow conditional jump statements
 - The statement that gets executed if the branch is not taken
Running example

A = 4
\[t1 = A \times B \]
repeat {
 \[t2 = t1/C \]
 if \(t2 \geq W \) {
 \[M = t1 \times k \]
 \[t3 = M + I \]
 }
 H = I
 M = t3 - H
} until \(T3 \geq 0 \)
Running example

1 \quad A = 4
2 \quad t1 = A \times B
3 \quad L1: \quad t2 = t1 / C
4 \quad if t2 < W \text{ goto L2}
5 \quad M = t1 \times k
6 \quad t3 = M + I
7 \quad L2: \quad H = I
8 \quad M = t3 - H
9 \quad if t3 \geq 0 \text{ goto L3}
10 \quad \text{goto L1}
11 \quad L3: \quad \text{halt}
Control flow graphs

- Divides statements into *basic blocks*

- Basic block: a maximal sequence of statements $l_0, l_1, l_2, ..., l_n$ such that if l_j and l_{j+1} are two adjacent statements in this sequence, then
 - The execution of l_j is always immediately followed by the execution of l_{j+1}
 - The execution of l_{j+1} is always immediately preceded by the execution of l_j

- Edges between basic blocks represent potential flow of control
A = 4
\[t_1 = A \times B \]

\[L1: \ t_2 = \frac{t_1}{c} \]
if \(t_2 < W \) goto L2

\[M = t_1 \times k \]
\[t_3 = M + I \]

\[L2: \ H = I \]
\[M = t_3 - H \]
if \(t_3 \geq 0 \) goto L3

\[L3: \text{halt} \]

How do we build this automatically?
Constructing a CFG

- To construct a CFG where each node is a basic block
 - Identify *leaders*: first statement of a basic block
 - In program order, construct a block by appending subsequent statements up to, but not including, the next leader
- Identifying leaders
 - First statement in the program
 - Explicit target of any conditional or unconditional branch
 - Implicit target of any branch
Partitioning algorithm

- Input: set of statements, $\text{stat}(i) = i^{th}$ statement in input
- Output: set of leaders, set of basic blocks where $\text{block}(x)$ is the set of statements in the block with leader x

- Algorithm

\[
\begin{align*}
\text{leaders} &= \{1\} \quad \text{//Leaders always includes first statement} \\
\text{for } i &= 1 \text{ to } |n| \quad \text{//}|n| = \text{number of statements} \\
\quad \text{if stat}(i) \text{ is a branch, then} \\
\quad \quad \text{leaders} &= \text{leaders} \cup \text{all potential targets} \\
\text{end for}\\
\text{worklist} &= \text{leaders} \\
\text{while worklist not empty do} \\
\quad x &= \text{remove earliest statement in worklist} \\
\quad \text{block}(x) &= \{x\} \\
\quad \text{for } (i = x + 1; i \leq |n| \text{ and } i \notin \text{leaders}; i++) \\
\quad \quad \text{block}(x) &= \text{block}(x) \cup \{i\} \\
\quad \text{end for}\\
\text{end while}
\]
Running example

1 A = 4
2 t1 = A * B
3 L1: t2 = t1 / C
4 if t2 < W goto L2
5 M = t1 * k
6 t3 = M + I
7 L2: H = I
8 M = t3 - H
9 if t3 \geq 0 goto L3
10 goto L1
11 L3: halt

Leaders =
Basic blocks =

Thursday, October 24, 13
Running example

```
1  A = 4
2  t1 = A * B
3  L1:  t2 = t1 / C
4  if t2 < W goto L2
5  M = t1 * k
6  t3 = M + I
7  L2:  H = I
8  M = t3 - H
9  if t3 ≥ 0 goto L3
10 goto L1
11 L3:  halt
```

Leaders = {1, 3, 5, 7, 10, 11}
Basic blocks = { {1, 2}, {3, 4}, {5, 6}, {7, 8, 9}, {10}, {11} }
Putting edges in CFG

- There is a directed edge from B_1 to B_2 if
 - There is a branch from the last statement of B_1 to the first statement (leader) of B_2
 - B_2 immediately follows B_1 in program order and B_1 does not end with an unconditional branch

- Input: $block$, a sequence of basic blocks

- Output: The CFG

```plaintext
for i = 1 to |block|
  x = last statement of block(i)
  if stat(x) is a branch, then
    for each explicit target y of stat(x)
      create edge from block $i$ to block $y$
  end for
  if stat(x) is not unconditional then
    create edge from block $i$ to block $i+1$
  end for
```
A = 4
\[t1 = A \times B \]

L1: \[t2 = \frac{t1}{c} \]
if \(t2 < W \) goto L2

\[M = t1 \times k \]
\[t3 = M + I \]

L2: \[H = I \]
\[M = t3 - H \]
if \(t3 \geq 0 \) goto L3

L3: halt
Discussion

- Some times we will also consider the *statement-level* CFG, where each node is a statement rather than a basic block.
 - Either kind of graph is referred to as a CFG.
 - In statement-level CFG, we often use a node to explicitly represent *merging* of control.
 - Control merges when two different CFG nodes point to the same node.
 - Note: if input language is *structured*, front-end can generate basic block directly.
 - “GOTO considered harmful”
Statement level CFG

A = 4

t1 = A * B

L1: t2 = t1/c

if t2 < W goto L2

M = t1 * k

M = t3 + I

t3 = M + I

if t3 ≥ 0 goto L3

L3: halt

goto L1

Thursday, October 24, 13
Loop optimization

- Low level optimization
 - Moving code around in a single loop
 - Examples: loop invariant code motion, strength reduction, loop unrolling

- High level optimization
 - Restructuring loops, often affects multiple loops
 - Examples: loop fusion, loop interchange, loop tiling
Low level loop optimizations

- Affect a single loop
- Usually performed at three-address code stage or later in compiler
- First problem: identifying loops
 - Low level representation doesn’t have loop statements!
Identifying loops

• First, we must identify *dominators*

 • Node *a* dominates node *b* if every possible execution path that gets to *b* *must* pass through *a*

• Many different algorithms to calculate dominators – we will not cover how this is calculated

• A *back edge* is an edge from *b* to *a* when *a* dominates *b*

• The target of a back edge is a *loop header*
natural loops

- Will focus on natural loops – loops that arise in structured programs
- For a node n to be in a loop with header h
 - n must be dominated by h
 - There must be a path in the CFG from n to h through a back-edge to h
- What are the back edges in the example to the right? The loop headers? The natural loops?
Loop invariant code motion

- Idea: some expressions evaluated in a loop never change; they are *loop invariant*
- Can move loop invariant expressions outside the loop, store result in temporary and just use the temporary in each iteration
- Why is this useful?
Identifying loop invariant code

• To determine if a statement
 \[s: a = b \text{ op } c \]
 is loop invariant, find all definitions of \(b \) and \(c \) that reach \(s \)

• A statement \(t \) defining \(b \) reaches \(s \) if there is a path from \(t \) to \(s \) where \(b \) is not re-defined

• \(s \) is loop invariant if both \(b \) and \(c \) satisfy one of the following
 • it is constant
 • all definitions that reach it are from outside the loop
 • only one definition reaches it and that definition is also loop invariant
Moving loop invariant code

• Just because code is loop invariant doesn’t mean we can move it!

```plaintext
for (...)    for (...)    a = 5;
   a = 5      if (*)          for (...)
   c = a;     a = 5
else         else
   a = 6
```

• We can move a loop invariant statement $a = b \ op \ c$ if
 • The statement dominates all loop exits where a is live
 • There is only one definition of a in the loop
 • a is not live before the loop

• Move instruction to a preheader, a new block put right before loop header
Strength reduction

- Like strength reduction peephole optimization
- Peephole: replace expensive instruction like a * 2 with a << 1
- Replace expensive instruction, multiply, with a cheap one, addition
- Applies to uses of an induction variable
- Opportunity: array indexing

for (i = 0; i < 100; i++)
 A[i] = 0;

L2:if (i >= 100) goto L1
 j = 4 * i + &A
 *j = 0;
 i = i + 1;
 goto L2

L1:
Strength reduction

- Like strength reduction peephole optimization
- Peephole: replace expensive instruction like a * 2 with a << 1
- Replace expensive instruction, multiply, with a cheap one, addition
- Applies to uses of an induction variable
- Opportunity: array indexing

```c
for (i = 0; i < 100; i++)
A[i] = 0;
```

```c
i = 0; k = &A;
L2: if (i >= 100) goto L1
    j = k;
    *j = 0;
    i = i + 1; k = k + 4;
    goto L2
L1: 
```
Induction variables

• A basic induction variable is a variable j
 • whose only definition within the loop is an assignment of the form $j = j \pm c$, where c is loop invariant
 • Intuition: the variable which determines number of iterations is usually an induction variable

• A mutual induction variable i may be
 • defined once within the loop, and its value is a linear function of some other induction variable j such that

 $$i = c_1 \times j \pm c_2 \text{ or } i = j / c_1 \pm c_2$$

 where c_1, c_2 are loop invariant

• A family of induction variables include a basic induction variable and any related mutual induction variables
Strength reduction algorithm

- Let i be an induction variable in the family of the basic induction variable j, such that $i = c_1 * j + c_2$
 - Create a new variable i'
 - Initialize in preheader

 $$i' = c_1 * j + c_2$$
 - Track value of j. After $j = j + c_3$, perform

 $$i' = i' + (c_1 * c_3)$$
 - Replace definition of i with

 $$i = i'$$
 - Key: c_1, c_2, c_3 are all loop invariant (or constant), so computations like $(c_1 * c_3)$ can be moved outside loop
Linear test replacement

- After strength reduction, the loop test may be the only use of the basic induction variable
- Can now eliminate induction variable altogether
- Algorithm
 - If only use of an induction variable is the loop test and its increment, and if the test is always computed
 - Can replace the test with an equivalent one using one of the mutual induction variables

```c
i = 2
for (; i < k; i++)
    j = 50*i
    ... = j
```

Strength reduction

```c
i = 2; j' = 50 * i
for (; i < k; i++, j' += 50)
    ... = j'
```

Linear test replacement

```c
i = 2; j' = 50 * i
for (; j' < 50*k; j' += 50)
    ... = j'
```
Loop unrolling

- Modifying induction variable in each iteration can be expensive
- Can instead unroll loops and perform multiple iterations for each increment of the induction variable
- What are the advantages and disadvantages?

```c
for (i = 0; i < N; i++)
    A[i] = ...
```

Unroll by factor of 4

```c
for (i = 0; i < N; i += 4)
    A[i] = ...
    A[i+1] = ...
    A[i+2] = ...
    A[i+3] = ...
```
High level loop optimizations

- Many useful compiler optimizations require restructuring loops or sets of loops
- Combining two loops together (*loop fusion*)
- Switching the order of a nested loop (*loop interchange*)
- Completely changing the traversal order of a loop (*loop tiling*)
- These sorts of high level loop optimizations usually take place at the AST level (where loop structure is obvious)
Cache behavior

- Most loop transformations target cache performance
- Attempt to increase spatial or temporal locality
- Locality can be exploited when there is reuse of data (for temporal locality) or recent access of nearby data (for spatial locality)
- Loops are a good opportunity for this: many loops iterate through matrices or arrays
- Consider matrix-vector multiply example
 - Multiple traversals of vector: opportunity for spatial and temporal locality
 - Regular access to array: opportunity for spatial locality

\[
\begin{align*}
\text{for } (i = 0; i < N; i++) \\
\text{for } (j = 0; j < N; j++) \\
y[i] & \ = A[i][j] \ * \ x[j]
\end{align*}
\]
Loop fusion

- Combine two loops together into a single loop
- Why is this useful?
- Is this always legal?
Loop interchange

- Change the order of a nested loop
- This is not always legal – it changes the order that elements are accessed!
- Why is this useful?
 - Consider matrix-matrix multiply when A is stored in column-major order (i.e., each column is stored in contiguous memory)

```java
for (i = 0; i < N; i++)
  for (j = 0; j < N; j++)
    y[i] += A[i][j] * x[j]
```
Loop interchange

- Change the order of a nested loop
- This is not always legal – it changes the order that elements are accessed!
- Why is this useful?
 - Consider matrix-matrix multiply when A is stored in column-major order (i.e., each column is stored in contiguous memory)

```c
for (j = 0; j < N; j++)
  for (i = 0; i < N; i++)
    y[i] += A[i][j] * x[j]
```
Loop tiling

- Also called “loop blocking”
- One of the more complex loop transformations
- Goal: break loop up into smaller pieces to get spatial and temporal locality
- Create new inner loops so that data accessed in inner loops fit in cache
- Also changes iteration order, so may not be legal

\[
\text{for } (i = 0; i < N; i++) \\
\quad \text{for } (j = 0; j < N; j++) \\
\quad \quad y[i] += A[i][j] \times x[j]
\]

\[
\text{for } (ii = 0; ii < N; ii += B) \\
\quad \text{for } (jj = 0; jj < N; jj += B) \\
\quad \quad \text{for } (i = ii; i < ii+B; i++) \\
\quad \quad \quad \text{for } (j = jj; j < jj+B; j++) \\
\quad \quad \quad \quad y[i] += A[i][j] \times x[j]
\]
Loop tiling

• Also called “loop blocking”
• One of the more complex loop transformations
• Goal: break loop up into smaller pieces to get spatial and temporal locality
• Create new inner loops so that data accessed in inner loops fit in cache
• Also changes iteration order, so may not be legal

for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 y[i] += A[i][j] * x[j]

for (ii = 0; ii < N; ii += B)
 for (jj = 0; jj < N; jj += B)
 for (i = ii; i < ii+B; i++)
 for (j = jj; j < jj+B; j++)
 y[i] += A[i][j] * x[j]
In a real (Itanium) compiler

GFLOPS relative to -O2; bigger is better

- % of Peak Performance

-01 -O2 + prefetch + interchage + unroll-jam + blocking = -O3 gcc -O4

factor faster than -O2

0 7.5 15.0 22.5 30.0

Thursday, October 24, 13
Loop transformations

• Loop transformations can have dramatic effects on performance
• Doing this legally and automatically is very difficult!
• Researchers have developed techniques to determine legality of loop transformations and automatically transform the loop
 • Techniques like unimodular transform framework and polyhedral framework
 • These approaches will get covered in more detail in advanced compilers course