Main idea

- Want to replace temporary variables with some fixed set of registers
- **First:** need to know which variables are live after each instruction
 - Two simultaneously live variables cannot be allocated to the same register

Register allocation

- For every node \(n \) in CFG, we have \(\text{out}[n] \)
 - Set of temporaries live out of \(n \)
- Two variables *interfere* if
 - both initially live (i.e., function args), or
 - both appear in \(\text{out}[n] \) for any \(n \)
- How to assign registers to variables?

Interference graph

- **Nodes** of the graph = variables
- **Edges** connect variables that interfere with one another
- Nodes will be assigned a *color* corresponding to the register assigned to the variable
- Two colors can’t be next to one another in the graph

Interference graph

<table>
<thead>
<tr>
<th>Instructions</th>
<th>Live vars</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b = a + 2)</td>
<td>(b, a)</td>
</tr>
<tr>
<td>(c = b * b)</td>
<td></td>
</tr>
<tr>
<td>(b = c + 1)</td>
<td></td>
</tr>
<tr>
<td>return (b * a)</td>
<td></td>
</tr>
</tbody>
</table>
Interference graph

Instructions
- \(b = a + 2 \)
- \(c = b * b \)
- \(b = c + 1 \)
- return \(b * a \)

Live vars
- \(a, c \)
- \(b, a \)

Interference graph

Instructions
- \(b = a + 2 \)
- \(c = b * b \)
- \(b = c + 1 \)
- return \(b * a \)

Live vars
- \(b, a \)
- \(a, c \)
- \(b, a \)

Interference graph

Instructions
- \(b = a + 2 \)
- \(c = b * b \)
- \(b = c + 1 \)
- return \(b * a \)

Live vars
- \(a, b \)
- \(a, c \)
- \(a, b \)

Interference graph

Instructions
- \(b = a + 2 \)
- \(c = b * b \)
- \(b = c + 1 \)
- return \(b * a \)

Live vars
- \(a, b \)
- \(a, c \)
- \(a, b \)

Graph coloring

- **Questions:**
 - Can we efficiently find a coloring of the graph whenever possible?
 - Can we efficiently find the optimum coloring of the graph?
 - How do we choose registers to avoid move instructions?
 - What do we do when there aren’t enough colors (registers) to color the graph?
Coloring a graph

- Kempe's algorithm [1879] for finding a K-coloring of a graph
- Assume K=3
- Step 1 (simplify): find a node with at most K-1 edges and cut it out of the graph. (Remember this node on a stack for later stages.)

- Once a coloring is found for the simpler graph, we can always color the node we saved on the stack
- Step 2 (color): when the simplified subgraph has been colored, add back the node on the top of the stack and assign it a color not taken by one of the adjacent nodes
If the graph cannot be colored, it will eventually be simplified to a graph in which every node has at least K neighbors.

Sometimes, the graph is still K-colorable!

Finding a K-coloring in all situations is an **NP-complete** problem.

We will have to approximate to make register allocators fast enough.
We got lucky!

Some graphs can't be colored in K colors:
Some graphs can't be colored in K colors:

Some graphs can't be colored in K colors:

No colors left for e!

Spilling code

- We need to generate extra instructions to load variables from stack and store them
- These instructions use registers themselves. What to do?
 - Stupid approach: always keep extra registers handy for shuffling data in and out: what a waste!
 - Better approach: rewrite code introducing a new temporary; rerun liveness analysis and register allocation
 - Intuition: you were not able to assign a single register to the variable that was spilled but there may be a free register available at each spot where you need to use the value of that variable

Rewriting code

- Consider: `add t1 t2`
 - Suppose `t2` is selected for spilling and assigned to stack location `[ebp-24]`
 - Invent new temporary `t35` for just this instruction and rewrite:
 - `mov t35, [ebp – 24];`
 - `add t1, t35`
 - Advantage: `t35` has a very short live range and is much less likely to interfere.
 - Rerun the algorithm; fewer variables will spill
Precolored Nodes

- Some variables are pre-assigned to registers
 - Eg: mul on x86/pentium
 - uses eax; defines eax, edx
 - Eg: call on x86/pentium
 - Defines (trashes) caller-save registers eax, ecx, edx
- Treat these registers as special temporaries; before beginning, add them to the graph with their colors

Precolored Nodes

- Can’t simplify a graph by removing a precolored node
- Precolored nodes are the starting point of the coloring process
- Once simplified down to colored nodes start adding back the other nodes as before

Optimizing Moves

- Code generation produces a lot of extra move instructions
 - mov t1, t2
 - If we can assign t1 and t2 to the same register, we do not have to execute the mov
 - Idea: if t1 and t2 are not connected in the interference graph, we coalesce into a single variable

Coalescing

- Problem: coalescing can increase the number of interference edges and make a graph uncolorable
- Solution 1 (Briggs): avoid creation of high-degree (>= K) nodes
- Solution 2 (George): a can be coalesced with b if every neighbour t of a:
 - already interferes with b, or
 - has low-degree (< K)

Simplify & Coalesce

- Step 1 (simplify): simplify as much as possible without removing nodes that are the source or destination of a move (move-related nodes)
- Step 2 (coalesce): coalesce move-related nodes provided low-degree node results
- Step 3 (freeze): if neither steps 1 or 2 apply, freeze a move instruction: registers involved are marked not move-related and try step 1 again

Overall Algorithm

1. Simplify, freeze and coalesce
2. Mark possible spills
3. Color & detect actual spills
4. Rewrite code to implement actual spills
5. Liveness