ECE 468 & 573
Problem Set 3: Common sub-expression elimination and local register allocation

© 00 NO O WN -

[EY
o -

For the following problems, consider the following piece of three-address code:

[
e we we

. e

e we

-

T QTHEP> WU QW
[
HE=QaQrEraars>~
+ + + + + + + 4+ o+
MW OO WWWwwN

[

. Show the result of performing Common Subexpression Elimination (CSE) on the

above code.

. Suppose E and C were aliased. How would that change the results of CSE?

. In class, we discussed how aliasing might reduce the number of common subexpres-

sions that we can eliminate. How might aliasing increase the amount of redundancy
in the code. (hint: consider what would happen if B and D were aliased).

. For each instruction, show which variables are live immediately after the instruction.
. How many registers would be needed to perform register allocation with no spilling?

. Top down register allocation is inefficient for the above code, as there are some

variables that could safely be assigned to the same register. What are they?

. Perform bottom-up register allocation on the code for a machine with three regis-

ters. Show what code would be generated for each 3AC instruction. When choosing
registers to allocate, always allocate the lowest-numbered register available. When
choosing registers to spill, choose the register holding a value that will be used farthest
in the future (in case of a tie, choose the lowest-numbered register).

. Draw the interference graph for the code.

. (ECE 573 only) Perform register allocation via graph coloring for the code. If you

need to spill, use the code-rewriting approach described in the notes.

Repeat steps 4, 7 and 8 for the following code (assume registers can hold either temporaries
or variables):



T1

T3
T4
T5
T6

© 0 NO Ok WN -

[y
o -
=

T2 =

T7 =

T9 =

A + B;
C + D;
T1 - T2;
C + T3;
D + T3;
T1 + T5;

W = ™

+ + 4+ +

T6;
T7;
T8;
T8;



