ECE 468 & 573
Problem Set 3: Symbol tables, ASTs and semantic actions

1. Why do we track the number of dimensions and sizes of arrays in symbol tables?

Answer: Two reasons. First, we need to know how big arrays are so that we can
correctly allocate space for them in activation records. Second, we need to know the
dimensions and sizes of multi-dimensional arrays so that we can correctly generate
code that accesses them. Consider the code A[i] [j]. To access this element of the
array, the compiler generates the following address calculation code: &A + i * diml
+ j. This requires knowing dim1.

2. What differentiates an abstract syntax tree from a parse tree?

Answer: A parse tree captures the structure of the program according to its gram-
mar, with interior nodes for non-terminals, and leaves for terminals. The same lan-
guage, parsed with a different grammar, would produce a different parse tree. An
abstract syntax tree, on the other hand, captures the structure of the program in-
dependent of the grammar. This structure is often more useful: expressions can be
represented as expression trees, with interior nodes being operations, for example.

3. Name one advantage to generating AST's before producing code, rather than produc-
ing code directly.

Answer: There are several advantages. Many compilers make passes over the AST
to check for correctness (e.g., to make sure that everything is well typed). Many
optimizations take place at the AST level, when the structure of the code is still
apparent.

4. Show what the abstract syntax tree would look like for the following expression:

w:=x+yx*(z+3)

Answer: The letters beside the nodes are the names of the nodes, which will be
used in later answers.



a@®/®\
¢ R

5. Give three address code would be generated for the above tree. Use the following
instructions: LD A, T loads from variable A into temporary T. OP T1, T2, T3
performs T3 = T1 OP T2. ST T, A stores from variable A into temporary T.

Answer:

If you generate the code manually, you would probably come up with something like
this:

LD X, T1
LD Y, T2
LD Z, T3
ADD T3, 3, T4
MUL T2, T4, T5
ADD T1, T5, T6
ST T6, W

If you generate the code automatically, you will probably come up with something
like this:

LD x, T6

LD y, T4

LD z, T2

ADD T2, 3, Ti
MUL T4, T1, T3



ADD T6, T4, T5
ST T, w

See the answer to the next problem to see how this might happen.

. Show the code generation information (any code, what temporary stores the result,
and whether it’s an l-value or an r-value) for each node in the AST above.

Answer: Note that in these code generation examples, I am (a) deferring loads
until we know whether a variable is used as a source or a destination for an assign-
ment, (b) generating the temporary for the result of an expression before generating
any code for the expression, including any loads that might need to happen. The
AST nodes are traversed in post-order, visiting the left child before the right child
(i.e., in alphabetical order)

Node a:

Temp: w

Type: 1l-value

Code: -—-—-
Node b:

Temp: x

Type: l-value

Code: ---
Node c:

Temp: y

Type: 1l-value

Code: ---
Node d:

Temp: z

Type: 1l-value

Code: ---
Node e:

Temp: 3

Type: constant

Code: ---



Node f:

Temp: T1
Type: r-value
Code: LD z, T2
ADD T2, 3, T1

Node g:

Temp: T3

Type: r-value

Code: LD y, T4
LD z, T2
ADD T2, 3, T1
MUL T4, T1, T3

Node h:

Temp: T5

Type: r-value

Code: LD x, T6
LD y, T4
LD z, T2
ADD T2, 3, T1
MUL T4, T1, T3
ADD T6, T4, T5

Node i:

Temp: N/A

Type: N/A

Code: LD x, T6
LD y, T4
LD z, T2
ADD T2, 3, T1
MUL T4, T1, T3
ADD T6, T4, T5
ST T5, w

Note that node i represents a complete statement, and hence does not have a tem-
porary holding its value.



