Analysis of
programs with pointers

Simple example

x:=5 S1
ptr:=@x S2 >>
*ptr:=9 S3
y =X S4)
program dependences

* What are the dependences in this program?

Problem: just looking at variable names will not give you the correct
information

— After statement S2, program names “x” and “*ptr” are both expressions
that refer to the same memory location.

— We say that ptr points-to x after statement S2.

In a C-like language that has pointers, we must know the points-to
relation to be able to determine dependences correctly

Wednesday, November 30, 2011

Wednesday, November 30, 2011

Program model

» For now, only types are int and int*
* No heap

— All pointers point to only to stack variables
» No procedure or function calls
Statements involving pointer variables:
— address: x := &y
—copy: X:=Yy
— load: X =%y
—store: *x:=y
 Arbitrary computations involving ints

Points-to relation

» Directed graph:
— nodes are program variables
— edge (a,b): variable a points-to variable b

» Can use a special node to represent NULL

+ Points-to relation is different at different program
points

Wednesday, November 30, 2011

Wednesday, November 30, 2011

Points-to graph

» Out-degree of node may be more than one
— if points-to graph has edges (a,b) and (a,c), it means that
variable a may point to either b or ¢

— depending on how we got to that point, one or the other
will be true

— path-sensitive analyses: track how you got to a program
point (we will not do this)

-
b iw] (e

What does x point toM

Ordering on points-to relation

» Subset ordering: for a given set of
variables
— Least element is graph with no edges

— G1 <= G2 if G2 has all the edges G1 has and
maybe some more

+ Given two points-to relations G1 and G2

— G1 U G2: least graph that contains all the
edges in G1 and in G2

Wednesday, November 30, 2011

Wednesday, November 30, 2011

Overview

» We will look at three different points-to analyses.

* Flow-sensitive points-to analysis
— Dataflow analysis
— Computes a different points-to relation at each point in program

» Flow-insensitive points-to analysis
— Computes a single points-to graph for entire program
— Andersen’s algorithm
« Natural simplification of flow-sensitive algorithm
— Steensgard’s algorithm
« Nodes in tree are equivalence classes of variables
— if x may point-to either y or z, put y and z in the same equivalence class
« Points-to relation is a tree with edges from children to parents rather
than a general graph
« Less precise than Andersen’s algorithm but faster

ptr X z y \ ptr X z y w
- O @) @) o O
—+0O o—=oO0 o o
ptr := @x
lo—o—0 o le) Andersen’s algorithm
y = @w
—{o—o0o—©0 o—o0
ptr = @y
| o—o0 ') @] O
\/O. o—» = =
@)
ptr . L/
Xy zw

Elow-sensitive algorithm

Steensgard’s algorithm

Wednesday, November 30, 2011

Wednesday, November 30, 2011

Notation

» Suppose S and S1 are set-valued variables.
+ S & S1: strong update

— set assignment
+ S U< S1: weak update

— set union: this is like S €< S U S1

Flow-sensitive algorithm

Wednesday, November 30, 2011

Wednesday, November 30, 2011

Dataflow equations

* Forward flow, any path analysis
» Confluence operator: G1 U G2
» Statements

G
G’ = G with pt'(x) € {y} G’ = G with pt'(x) € U pt(a)

for all ain pt(y)
G
G’ = G with pt'(x) € pt(y)

for all ain pt(x)

Dataflow equations (contd.)

G
G’ = G with pt(x) € {y} G’ = G with pt(x) € U pt(a)

G’ = G with pt'(a) U< pt(y)
for all a in/pt(x)

weak update (why?)

strong updates

G
G’ = G with pt(a) U< pt(y)
Wednesday, November 30, 2011

Wednesday, November 30, 2011

Stronqg vs. weak updates

» Strong update:

— At assignment statement, you know precisely which variable is
being written to

— Example: x:= ...
— You can remove points-to information about x coming into the
statement in the dataflow analysis.
» Weak update:

— You do not know precisely which variable is being updated; only
that it is one among some set of variables.

— Example: *x:= ...

— Problem: at analysis time, you may not know which variable x
points to (see slide on control-flow and out-degree of nodes)

— Refinement: if out-degree of x in points-to graph is 1 and x is
known not be nil, we can do a strong update even for *x := ...

Structures

» Structure types
— struct cell {int value; struct cell *left, *right;}
— struct cell x,y;
* Use a “field-sensitive” model
— x and y are nodes
- eaﬁ? node has three internal fields labeled value, left,
rig
 This representation permits pointers into fields of
structures

— If this is not necessary, we can simply have a node for
each structure and label outgoing edges with field
name

Wednesday, November 30, 2011

Wednesday, November 30, 2011

Example

int main(void)

{ struct cell {int value; X

struct cell *next;

; y
struct cell x,y,z,*p; next
int sum;

z.value =7;
z.next = NULL;
while (p != NULL) {
sum = sumy+ (*p).value; z
= (*p).next;
PRt
return sum;

x.value = 5; Z
x.next = &y;
y.value = 6;
y.next = &z;
. Cud

Flow-insensitive algorithms

Wednesday, November 30, 2011

Wednesday, November 30, 2011

Flow-insensitive analysis

» Flow-sensitive analysis computes a different graph at
each program point.

» This can be quite expensive.

* One alternative: flow-insensitive analysis
— Intuition:compute a points-to relation which is the least upper
bound of all the points-to relations computed by the flow-
sensitive analysis
* Approach:
— Ignore control-flow
— Consider all assignment statements together
« replace strong updates in dataflow equations with weak updates

— Compute a single points-to relation that holds regardless of the
order in which assignment statements are actually executed

Andersen’s algorithm

weak updates only

» Statements

G

G = G with pt(x) U< {y}
G

G = G with pt(x) U< pt(y)

G = G with pt(x) U< pt(a)
for all a in pt(y)

G
G = G with pt(a) U< pt(y)

for all a in pt(x)

Wednesday, November 30, 2011

Wednesday, November 30, 2011

Solution to
Example Ty
o flow-insensitive equations
{ struct cell {int value;

struct cell *next;

I3 O
struct cell x,y,z,*p; x.next = &y; \
int sum; X
y.next =&z y
x.value = 5; — ——
x.next = &y; z.next = NULL; — G @
y.value = 6; -
y.next = &z; p=&x; z
z.value = 7;
z.next = NULL; p = (*p).next;
p = &x;
sum = 0; . . - . @
while (p 1= NULL) { Assignments for flow-insensitive analysis
sum = sum + (*p).value;
p=(p)next - Compare with points-to graphs for flow-sensitive solution
return sum; - Why does p point-to NULL in this graph?
}
Wednesday, November 30, 2011 Wednesday, November 30, 2011

Andersen’s algorithm , _
formulated using set constraints Steensgard’s algorithm

« Statements * Flow-insensitive

* Computes a points-to graph in which there is no
fan-out

— In points-to graph produced by Andersen’s algorithm,
if X points-to y and z, y and z are collapsed into an

X =Yy equivalence class

— Less accurate than Andersen’s but faster
yE pt(x) Va€ pt(y).pt(x) 2 pt(a)

* We can exploit this to design an O(N*OL(N))
algorithm, where N is the number of statements in

the program.

pH(x) 2 pt(y) Va€ pt(x).pt(a) 2 pt(y)

Wednesday, November 30, 2011 Wednesday, November 30, 2011

Steensgard’s algorithm

using set constraints Trick for one-pass processing

» Statements + Consider the following equations
pivar® 2 pt(x) = pt(y) dummy € pt(x)
Z € pt(x) pi(x) = pt(y)
No fan-out Vx.¥y, z€ pt(x).p1(y) = pt(2) 2 € pi(x)

» When first equation on left is processed, x and y are not pointing to
YyE pt(x) Va€ pt(y).pt(x) = pt(a) anything. Y g

* Once second equation is processed, we need to go back and
reprocess first equation.

» Trick to avoid doing this: when processing first equation, if x and y
are not pointing to anything, create a dummy node and make x and
=y =y y point to that

_ — this is like solving the system on the right
t(x) = pt(y) Ya€ pt(x).pt(a) = pt) : . .
P Py pIx)-pi@) = pi(y) » ltis easy to show that this avoids the need for revisiting equations.

Wednesday, November 30, 2011 Wednesday, November 30, 2011

Algorithm

» Can be implemented in single pass through
program

 Algorithm uses union-find to maintain
equivalence classes (sets) of nodes

» Points-to relation is implemented as a pointer
from a variable to a representative of a set

» Basic operations for union find:

— rep(v): find the node that is the representative of the
setthat visin

— union(v1,v2): create a set containing elements in sets
containing v1 and v2, and return representative of that
set

Auxiliary methods

class var {
//instance variables
points_to: var;
name: string;

//constructor; also
creates singleton set in
union-find data structure
var(string);

//class method; also
creates singleton set in
union-find data structure
make-dummy-var () :var;

rec_union(var vl, var v2) {

pl = pt(rep(vl));
p2 = pt(rep(v2));
t1 = union(rep(vl), rep(v2));
if (pl == p2)
return;
else if (pl != null && p2 != null)
t2 = rec_union(pl, p2);
else if (pl != null) t2 = pl;
else if (p2 != null) t2 = p2;
else t2 = null;

tl.set pt(t2);
return tl;

}
//instance methods
get_pt(): var;
set_pt(var);//updates rep
}

pt(var v) {
//v does not have to be representative
t = rep(v);
return t.get pt();

Wednesday, November 30, 2011

Wednesday, November 30, 2011

Algorithm

Initialization: make each program variable into an object of type var
and enter object into union-find data structure

for each statement S in the program do
Sis x 1= &y: {if (pt(x) == null)
x.set-pt(rep(y));
else rec-union(pt(x),y);

}
Sis x :=y: {if (pt(x) == null and pt(y) == null)
x.set-pt(var.make-dummy-var());
y.set-pt(rec-union(pt(x),pt(y))):

}
S is x = *y:{if (pt(y) == null)
y.set-pt(var.make-dummy-var());
var a := pt(y);
if(pt(a) == null)
a.set-pt(var.make-dummy-var());
x.set-pt(rec-union(pt(x),pt(a)));

S is *x := y:{if (pt(x) == null)
x.set-pt(var.make-dummy-var());
var a := pt(x);
if(pt(a) == null)
a.set-pt(var.make-dummy-var());
y.set-pt(rec-union(pt(y),pt(a)));
}

Inter-procedural analysis

* What do we do if there are function calls?

xl = &a X2 = &a
yl = &b y2 = &b
swap(xl, yl) swap(x2, y2)

swap (pl, p2) {

tl = *pl;
t2 = *p2;
*pl = t2;
*p2 = tl;

Wednesday, November 30, 2011

Wednesday, November 30, 2011

Two approaches

+ Context-sensitive approach:

— treat each function call separately just like real
program execution would

— problem: what do we do for recursive functions?
* need to approximate

» Context-insensitive approach:

— merge information from all call sites of a particular
function

— in effect, inter-procedural analysis problem is reduced
to intra-procedural analysis problem
+ Context-sensitive approach is obviously more
accurate but also more expensive to compute

Context-insensitive approach

x1l = &a X2 = &a
yl = &b y2 = &b
swap(x1l, yl) swap(x2, y2)

\/

swap (pl, p2) {

tl = *pl;
t2 = *p2;
*pl = t2;
*p2 = tl;

Wednesday, November 30, 2011

Wednesday, November 30, 2011

Context-insensitive/Flow-insensitive
Analysis

Context-sensitive approach

x1 = sa %2 — sa » For now, assume we do not have function
yl = &b y2 = &b parameters
1, y1 . . .
swap(xl, v1) swap(x2, y2) — this means we know all the call sites for a given
l function
swap (pl, p2) { swap (pl, p2) { + Set up equations for binding of actual and formal
e :g;f s parameters at each call site for that function
*pl = t2; *pl — use same variables for formal parameters for all call
*p2 = tl; *p2 sites
! ' ~ * Intuition: each invocation provides a new set of
constraints to formal parameters
Wednesday, November 30, 2011 Wednesday, November 30, 2011
Swap example Heap allocation
+ Simplest solution:
— use one node in points-to graph to represent all heap
xl = &; x2 = sa cells
1 =& = .
Ll Y2 = &b « More elaborate solution:
P XL I'pl = x2 | . o
P2 =yl p2 = y2 — use a different node for each malloc site in the
E— program
£1 = *pl; * Even more elaborate solution: shape analysis
t2 = *pz; — goal: summarize potentially infinite data structures
*pl = t2; — but keep around enough information so we can
*p2 = tl; disambiguate pointers from stack into the heap, if
possible
Wednesday, November 30, 2011 Wednesday, November 30, 2011
Summary _ , ,
History of points-to analysis
Less precise More precise
N Fignre | A Mesf Histery of Peenter Analysis [X3] — bocus on scalahilty and precimon
Equality-based Subset-based Bagunlty s Subeoi-borcd Flow scnsliive
o Andume 1)
_,_z .) 1o 5 KLOC
i it " _:; ' ;‘:l'-'f"ll!ﬂlllil(r . -kv",':"l,'-"""‘, '.I- 17l
Flow-insensitive Flow-sensitive JE| e 0 S . “Cma g
o Steanagannd 3 el Taacdivn 1900 90 KILOC
1996 14 MLOWC MLOC
Gt acalable pointar analyxs o Bl o ul. 2
N — — '.’L.'.'!IMIJ‘I\I.IL:L‘
Context-insensitive Context-sensitive ot A
g9
i shndrich ot], |8 o Wholoy oxd Lam [27) o Wilkon and Lam 177
i R e
* Whaley and Tinard |%]
1905 &0 KLOC
No consensus about which technique to use

Experience: if you are context-insensitive, you might as well be flow-insensitive)
from Ryder and Rayside

Wednesday, November 30, 2011 Wednesday, November 30, 2011

