More Dataflow Analysis

oooooooooooooooooooo



Recall steps to building analysis

® Step |:Choose lattice

® Step 2: Choose direction of dataflow (forward or
backward)

® Step 3: Create monotonic transfer function

® Step 4: Choose confluence operator (i.e., what to do at
merges)

® FEither join or meet in the lattice

® |et’s walk through these steps for a new analysis

Monday, November 26, 12



Liveness analysis

® Which variables are live at a particular program point!?
® Used all over the place in compilers
® Register allocation

® Loop optimizations

Monday, November 26, 12



Choose lattice

® What do we want to know!?

At each program point,
want to maintain the set
of variables that are live

Lattice elements: sets of
variables

Natural choice for lattice:

powerset of variables!

{a,b,c}

CIN

{a,b} {a,c} {b,c}

DX

{a}  {b} {c}

NV4

{}

Monday, November 26, 12



Choose dataflow direction

® A variable is live if it is used later in the program without
being redefined

® At a given program point, we want to know information
about what happens later in the program

® This means that liveness is a backwards analysis

® Recall that we did liveness backwards when we
looked at single basic blocks

Monday, November 26, 12



Create x-fer functions

® What do we do for a statement like:
X=y+tz

® |[f x was live “before” (i.e., live after the statement), it isn’t
now (i.e., is not live before the statement)

® |f y and z were not live “before,’ they are now
® What about:

X=X

Monday, November 26, 12



Create x-fer functions

® Let’s generalize

® For any statement s, we can look at which live variables are killed,
and which new variables are made live (generated)

® Which variables are killed in s?

® The variables that are defined in s: DEF(s)
®  Which variables are made live in s?

® The variables that are used in s: USE(s)

® |[f the set of variables that are live after s is X, what is the set of
variables live before s?

Ts(X) =use(s) U (X —def(s))

® |s this monotonic?

Monday, November 26, 12



Dealing with aliases

® Aliases, as usual, cause problems

® Consider

int x, y

int *z, *w;

1f (...) z = &y else z = &x

1f (...) w =&y else w = &x

*z = *w; //which variable 1s defined? which 1is used?

® What should USE(*z = *w) and DEF(*z = *w) be?

® Keep in mind: the goal is to get a list of variables that may
be live at a program point

® For now, assume there is no aliasing

Monday, November 26, 12



Dealing with function calls

® Similar problem as aliases:

int foo(int &x, int &y); //pass by reference!

void main() {
int x, y, z;
z = foo(x, y);
¥

® Simple solution: functions can do anything — redefine
variables, use variables

® So DEF(foo()) is { } and USE(foo()) isV

® Real solution: interprocedural analysis, which determines what
variables are used and defined in foo

Monday, November 26, 12



Choose confluence operator

® What happens at a merge
point?

® The variables live in to a
merge point are the

variables that are live

y=X y=w
along either branch
® Confluence operator: Set
union (L) of all live sets of ‘ X =w ‘
outgoing edges
Tmerge — U X
X Esucc(merge)

Monday, November 26, 12



How to initialize analysis?

® At the end of the program, we know no variables are live
— value at exit point is { }

® What about elsewhere in the program!?
® We should initialize other sets to { }

® This is consistent with our approach to finding the
least fixpoint

Monday, November 26, 12



READ(Z)

{}

{

READ(N)

1
{}

'

X=1

X=X+Z

!
{}

0 Cﬁ
- {}=— X<N
PRINT(X)

{}

|

Monday, November 26, 12




An alternate approach

® Dataflow analyses like live-variable analysis are bit-vector
analyses: are even more structured than regular dataflow
analysis

® Consistent lattice: powerset
® Consistent transfer functions

® Many sources only talk about bitvector dataflow

Monday, November 26, 12



Bit-vector lattices

® Consider a single element,V, of the powerset(S) lattice

® FEach item in S either appears inV or does not: can
represent using a single bit

® Can representV as a bit vector

® U and n (which are just u and n) are simply bitwise V and
A, respectively

Monday, November 26, 12



Eliminating merge nodes

® Many dataflow presentations do not
use explicit merge nodes in CFG

® How do we handle this!?

® Problem: now a node may be a
statement and a merge point

® Solution: compose confluence
operator and transfer functions

® Note: non-merge nodes have just
one successor; this equation works
for all nodes!

T(s) =use(s) U (( U X) — def(s))

X Esucc(s)

Monday, November 26, 12



Simplifying matters

T(s) =use(s) U (( U X) — def(s))

X esucc(s)
® | ets split this up into two different sets

® OUT(s): the set of variables that are live immediately after
a statement is executed

® |N(s): the set of variables that are live immediately before
a statement is executed

IN(s)
OUT(s)

use(s) U (OUT(s) — def(s))
UtEsucc(s) IN(t)

Monday, November 26, 12



Generalizing

® USE(s) are the variables that become live due to a
statement—they are generated by this statement

® DEF(s) are the variables that stop being live due to a
statement—they are killed by this statement

IN(s)
OUT(s)

gen(s) U (OUT(s) — kill(s))
Utésucc(s) IN(t)

Monday, November 26, 12



Bit-vector analyses

® A bit-vector analysis is any analysis that

® Operates over the powerset lattice, ordered by € and with u and n as
its meet and join

e Has transfer functions that can be written in the form:

IN(s) gen(s) U (OUT(s) — kill(s))
OUT(S) Ut€succ(3) IN(t)

® Are these transfer functions monotonic? (Hint:if f and g are
monotonic, is f - g monotonic?)

® gen and kill are dependent on the statement, but not on IN or OUT

e Things are a little different for forward analyses, and some analyses use n
instead of u

Monday, November 26, 12



Reaching definitions

® What definitions of a variable reach a particular program point

® A definition of variable x from statement s reaches a statement
t if there is a path from s to t where x is not redefined

® Especially important if x is used in t

® Used to build def-use chains and use-def chains, which are key
building blocks of other analyses

® Used to determine dependences: if x is defined in s and that
definition reaches t then there is a flow dependence from s
tot

® We used this to determine if statements were loop invaraint

® All definitions that reach an expression must originate from
outside the loop, or themselves be invariant

Monday, November 26, 12



Creating a reaching-def analysis

® Can we use a powerset lattice?

® At each program point, we want to know which definitions
have reached a particular point

® (Can use powerset of set of definitions in the program
® Vis set of variables, S is set of program statements
® Definitionitd e V x §
® Use a tuple, <v,s>
® How big is this set?

® At most |V x §| definitions

Monday, November 26, 12



Forward or backward?

® What do you think?

Monday, November 26, 12



Choose confluence operator

® Remember: we want to know if a definition may reach a
program point

® What happens if we are at a merge point and a definition
reaches from one branch but not the other?

® We don’t know which branch is taken!

® We should union the two sets — any of those definitions
can reach

® We want to avoid getting too many reaching definitions —
should start sets at L

Monday, November 26, 12



Transfer functions for RD

® Forward analysis, so need a slightly different formulation

® Merged data flowing into a statement

IN() = Usepreasy OUT(H)
OUT(s) = gen(s)U(IN(s)—Kkill(s))
® What are gen and kill?
® gen(s): the set of definitions that may occur at s
® eg,gen(si:x =e)is <sj, x>

® kill(s): all previous definitions of variables that are definitely
redefined by s

® eg, kill(si:x =e)is <* x>

Monday, November 26, 12



Available expressions

® We've seen this one before

® What is the lattice! powerset of all expressions appearing
in a procedure

® Forward or backward!?

® Confluence operator?

Monday, November 26, 12



Transfer functions for meet

® What do the transfer functions look like if we are doing a meet?

IN(S) = Miepreds) OUT(t)
OUT(S) = gen(s)U(IN(S)— kill(s)

® gen(s): expressions that must be computed in this statement

® kill(s): expressions that use variables that may be defined in this statement

Note difference between these sets and the sets for reaching definitions
or liveness

® |Insight: gen and kill must never lead to incorrect results

Must not decide an expression is available when it isn’t, but OK to be safe
and say it isn’t

Must not decide a definition doesn’t reach, but OK to overestimate and
say it does

Monday, November 26, 12



Analysis initialization

® Remember our formalization

® If we start with everything initialized to L, we compute the least fixpoint

® |f we start with everything initialized to T, we compute the greatest
fixpoint

® Which do we want!? It depends!
® Reaching definitions: a definition that may reach this point

®  We want to have as few reaching definitions as possible = use least
fixpoint

® Available expressions: an expression that was definitely computed earlier

®  We want to have as many available expressions as possible = use
greatest fixpoint

® Rule of thumb: if confluence operator is L, start with L, otherwise start
with T

Monday, November 26, 12



Analysis initialization (ll)

® The set at the entry of a program (for forward analyses) or
exit of a program (for backward analyses) may be different

® One way of looking at this: start statement and end
statement have their own transfer functions

® General rule for bitvector analyses: no information at
beginning of analysis, so first set is always { }

Monday, November 26, 12



Very busy expressions

® An expression is very busy if it is computed on every path
that leads from a program point

® Why does this matter?

® Can calculate very busy expressions early without
wasting computation (since the expression is used at
least once on every outgoing path) — this can save space

® Good candidates for loop invariant code motion

Monday, November 26, 12



Very busy expressions

® [attice!

® Direction!?

® Confluence operator?
® |nitialization?

® Transfer functions!?

o Gen! Kill?

Monday, November 26, 12



