Dataflow Analysis

Program optimizations

- So far we have talked about different kinds of optimizations
 - Peephole optimizations
 - Local common sub-expression elimination
 - Loop optimizations
- What about global optimizations
 - Optimizations across multiple basic blocks (usually a whole procedure)
 - Not just a single loop

Useful optimizations

- Common subexpression elimination (global)
 - Need to know which expressions are available at a point
- Dead code elimination
 - Need to know if the effects of a piece of code are never needed, or if code cannot be reached
- Constant folding
 - Need to know if variable has a constant value
- Loop invariant code motion
 - Need to know where and when variables are live
- So how do we get this information?

Dataflow analysis

- Framework for doing compiler analyses to drive optimization
- Works across basic blocks
- Examples
 - Constant propagation: determine which variables are constant
 - Liveness analysis: determine which variables are live
 - Available expressions: determine which expressions are have valid computed values
 - Reaching definitions: determine which definitions could "reach" a use

Example: constant propagation

- Goal: determine when variables take on constant values
- Why? Can enable many optimizations
 - Constant folding

Create dead code

```
x = 1;
y = x + 2;
if (y > x) then y = 5
... y ...
```

Example: constant propagation

- Goal: determine when variables take on constant values
- Why? Can enable many optimizations
 - Constant folding

```
x = 1;

y = x + 2;

if (x > z) then y = 5

... y ... y ... y ...
```

Create dead code

```
x = 1;
y = x + 2;
if (y > x) then y = 5
... y ...
```

Example: constant propagation

- Goal: determine when variables take on constant values
- Why? Can enable many optimizations
 - Constant folding

```
x = 1;

y = x + 2;

if (x > z) then y = 5

... y ... y ... y ...
```

Create dead code

```
x = 1;

y = x + 2;

if (y > x) then y = 5

\dots y \dots

x = 1;

y = 3; //dead code

if (true) then y = 5 //simplify!

\dots y \dots
```

How can we find constants?

- Ideal: run program and see which variables are constant
 - Problem: variables can be constant with some inputs, not others – need an approach that works for all inputs!
 - Problem: program can run forever (infinite loops?) –
 need an approach that we know will finish
- Idea: run program symbolically
 - Essentially, keep track of whether a variable is constant or not constant (but nothing else)

Overview of algorithm

- Build control flow graph
 - We'll use statement-level CFG (with merge nodes) for this
- Perform symbolic evaluation
 - Keep track of whether variables are constant or not
- Replace constant-valued variable uses with their values, try to simplify expressions and control flow

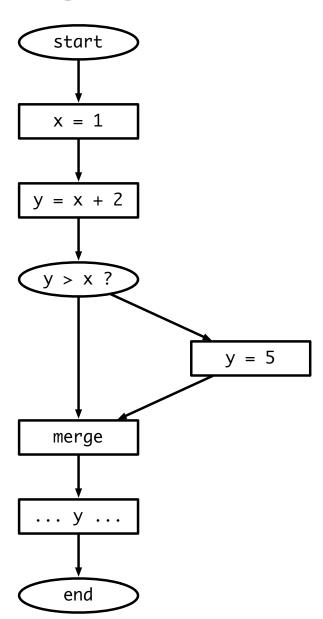
Build CFG

```
x = 1;

y = x + 2;

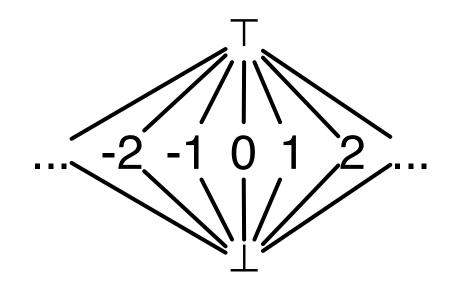
if (y > x) then y = 5;

... y ...
```



Symbolic evaluation

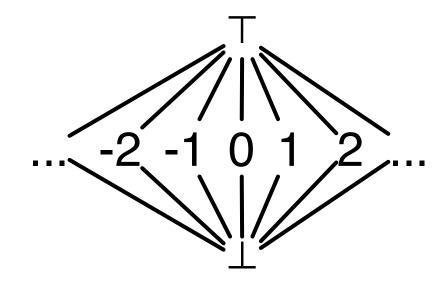
- Idea: replace each value with a symbol
 - constant (specify which),
 maybe constant, definitely not
 constant
- Can organize these possible values in a lattice (will formalize this later)



Symbolic evaluation

- Evaluate expressions symbolically: eval(e, V_{in})
 - If e evaluates to a constant, return that value. If any input is

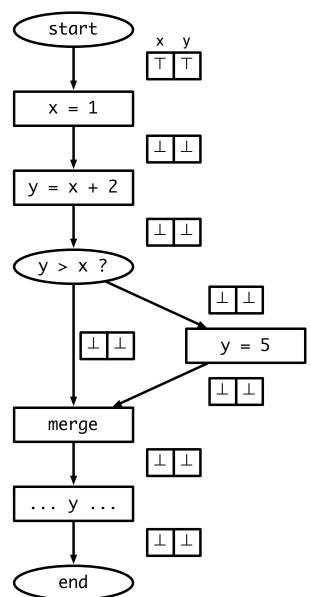
 ⊤ (or ⊥), return ⊤ (or ⊥)
 - Why?
- Two special operations on lattice
 - meet(a, b) highest value less than or equal to both a and b
 - join(a, b) lowest value greater than or equal to both a and b



Join often written as a \square b Meet often written as a \square b

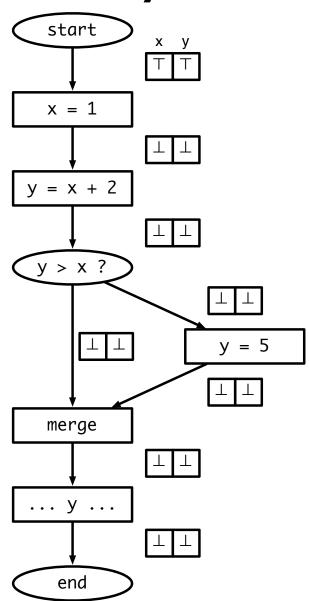
Putting it together

- Keep track of the symbolic value of a variable at every program point (on every CFG edge)
 - State vector
- What should our initial value be?
 - Starting state vector is all \top
 - Can't make any assumptions about inputs – must assume not constant
 - Everything else starts as ⊥, since we don't know if the variable is constant or not at that point



Executing symbolically

- For each statement t = e
 evaluate e using V_{in}, update value
 for t and propagate state vector to
 next statement
- What about switches?
 - If e is true or false, propagate V_{in} to appropriate branch
 - What if we can't tell?
 - Propagate V_{in} to both branches, and symbolically execute both sides
- What do we do at merges?

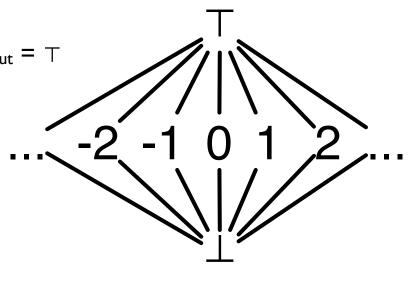


Handling merges

- Have two different V_{in}s coming from two different paths
- Goal: want new value for V_{in} to be safe (shouldn't generate wrong information), and we don't know which path we actually took
- Consider a single variable. Several situations:

•
$$V_1 = \bot, V_2 = * \rightarrow V_{out} = *$$

- $V_1 = constant x, V_2 = x \rightarrow V_{out} = x$
- V_1 = constant x, V_2 = constant $y \rightarrow V_{out} = \top$
- $V_1 = \top, V_2 = * \rightarrow V_{out} = \top$
- Generalization:
 - $V_{out} = V_1 \sqcup V_2$



Result: worklist algorithm

- Associate state vector with each edge of CFG, initialize all values to \bot , worklist has just start edge
 - While worklist not empty, do:

```
Process the next edge from worklist

Symbolically evaluate target node of edge using input state vector

If target node is assignment (x = e), propagate V<sub>in</sub>[eval(e)/x] to
output edge

If target node is branch (e?)

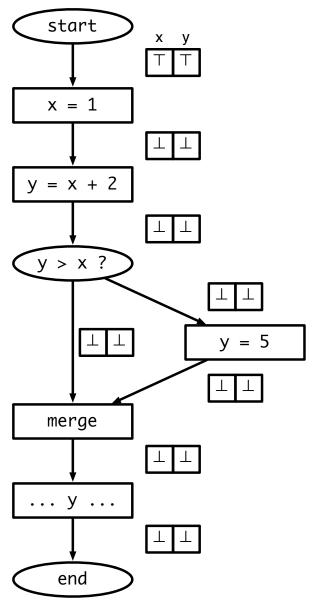
If eval(e) is true or false, propagate V<sub>in</sub> to appropriate
output edge

Else, propagate V<sub>in</sub> along both output edges

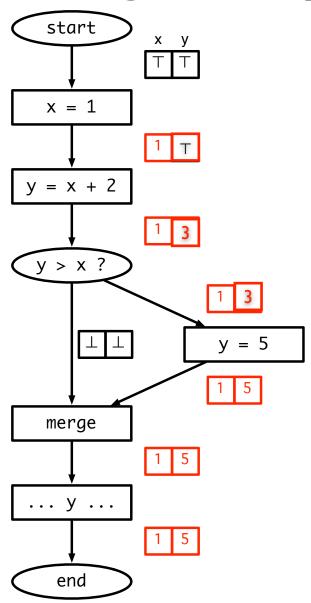
If target node is merge, propagate join(all V<sub>in</sub>) to output edge

If any output edge state vector has changed, add it to worklist
```

Running example



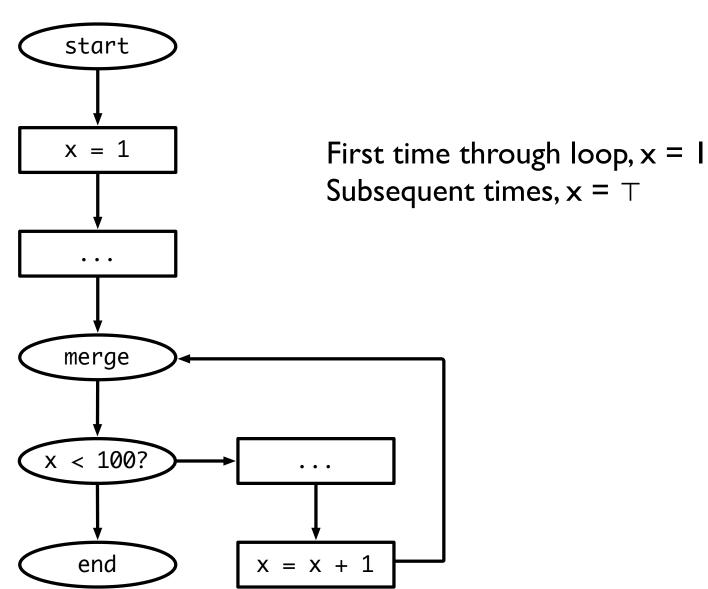
Running example



What do we do about loops?

- Unless a loop never executes, symbolic execution looks like it will keep going around to the same nodes over and over again
- Insight: if the input state vector(s) for a node don't change, then its output doesn't change
 - If input stops changing, then we are done!
- Claim: input will eventually stop changing. Why?

Loop example



Complexity of algorithm

- V = # of variables, E = # of edges
- Height of lattice = 2 → each state vector can be updated at most 2 *V times.
- So each edge is processed at most 2 * V times, so we process at most 2 * E * V elements in the worklist.
- Cost to process a node: O(V)
- Overall, algorithm takes O(EV²) time

Question

- Can we generalize this algorithm and use it for more analyses?
- First, let's lay the theoretical foundation for dataflow analysis.

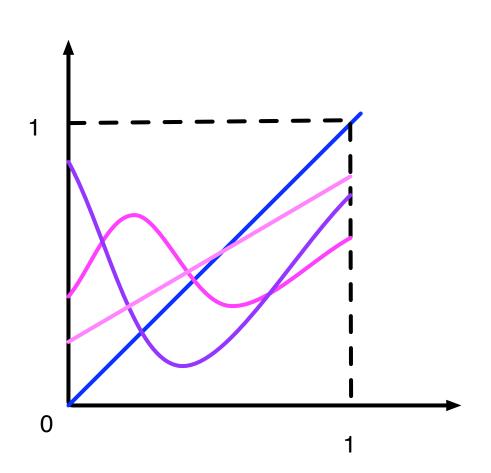
Lattice Theory

First, something interesting

- Brouwer Fixpoint Theorem
 - Every continuous function f from a closed disk into itself has at least one fixed point
- More formally:
 - Domain D: a convex, closed, bounded subspace in a plane (generalizes to higher dimensions)
 - Function $f: D \to D$
 - There exists some x such that f(x) = x

Intuition

- Consider the onedimensional case: mapping a line segment onto itself
- $x \in [0, 1]$
- $f(x) \in [0, 1]$
- There must exist some x for which f(x) = x
- Examples (in 2D)
 - A mall directory
 - Crumpling up a piece of graph paper



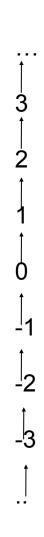
Back to dataflow

- Game plan:
 - Finite partially ordered set with least element: D
 - Function $f: D \to D$
 - Monotonic function $f: D \rightarrow D$
 - \exists fixpoint of f
 - ∃ least fixpoint of f
 - ullet Generalization to case when $oldsymbol{D}$ has a greatest element, op
 - ∃ greatest fixpoint of f
 - Generalization to systems of equations

Partially ordered set (poset)

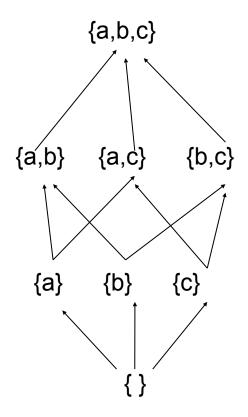
- Set D with a relation

 □ that is
 - Reflexive: $x \sqsubseteq x$
 - Anti-symmetric: $x \sqsubseteq y$ and $y \sqsubseteq x \Rightarrow y = x$
 - Transitive: $x \sqsubseteq y, y \sqsubseteq z \Rightarrow x \sqsubseteq z$
- Example: set of integers and ≤
- Graphical representation of poset
 - Graph in which nodes are elements of D and relation \sqsubseteq is indicated by arrows
 - Usually omit reflexive and transitive arrows for legibility
 - Not counting reflexive edges, graph is always a DAG (why?)



Another example

- Powerset of any set, ordered by ⊆
 is a poset
- In the example, poset elements are {}, {a}, {a, b}, {a, b, c}, etc.
- $X \sqsubseteq Y \text{ iff } X \subseteq Y$



Finite poset with least element

- Poset in which
 - Set is finite
 - There is a least element that is below all other elements in poset
- Examples
 - Set of integers ordered by ≤ is not a finite poset with least element (no least element, not finite)
 - Set of natural numbers ordered by ≤ has a least element (0), but not finite
 - Set of factors of 12, ordered by \leq has a least element as is finite
 - Powerset example from before is finite (how many elements?)
 with a least element ({ })

Domains

- "Finite poset with least element" is a mouthful, so we will abbreviate this to domain
- Later, we will add additional conditions to domains that are of interest to us in the context of dataflow analysis
 - (Goal: what is a lattice?)

Functions on domains

- If D is a domain, we can define a function $f:D \to D$
 - Function maps each element of domain on to another element of the domain
- Example: for D = powerset of {a, b, c}
 - $f(x) = x \cup \{a\}$

 - $h(x) = \{a\} x$

Monotonic functions

- A function $f: D \to D$ on a domain D is monotonic if
 - $x \sqsubseteq y \Rightarrow f(x) \sqsubseteq f(y)$
- Note: this is not the same as $x \subseteq f(x)$
 - This means that x is extensive
- Intuition: think of f as an electrical circuit mapping input to output
 - If f is monotonic, raising the input voltage raises the output voltage (or keeps it the same)
 - If f is extensive, the output voltage is always the same or more than the input voltage

Examples

- Domain D is the powerset of {a, b, c}
- Montonic functions:
 - $f(x) = \{\} \text{ (why?)}$
- Not monotonic
 - $f(x) = \{a\} x \text{ (why?)}$
- Extensivity
 - $f(x) = x \cup \{a\}$ is monotonic and extensive
 - $f(x) = x \{a\}$ is monotonic but not extensive
 - $f(x) = \{a\} x$ is neither
- What is a function that is extensive, but not monotonic?

Fixpoints

- Suppose $f: D \rightarrow D$.
 - A value x is a fixpoint of f if f(x) = x
 - f maps x to itself
- Examples: D is a powerset of {a, b, c}
 - Identity function: f(x) = x
 - Every element is a fixpoint
 - $f(x) = x \cup \{a\}$
 - Every set that contains a is a fixpoint
 - $f(x) = \{a\} x$
 - No fixpoints

Fixpoint theorem

• One form of *Knaster-Tarski Theorem*:

If D is a domain and $f:D \to D$ is monotonic, then f has at least one fixpoint

More interesting consequence:

If \perp is the least element of D, then f has a least fixpoint, and that fixpoint is the largest element in the chain

```
\perp, f(\perp), f(f(\perp)), f(f(f(\perp))) ... f<sup>n</sup>(\perp)
```

Least fixpoint: a fixpoint of f, x such that, if y is a fixpoint of f, then x
 □ y

Examples

- For domain of powersets, { } is the least element
- For identity function, fⁿ({ }) is the chain
 { }, { }, ... so least fixpoint is { }, which is correct
- For f(x) = x ∪ {a}, we get the chain
 { }, {a}, {a}, ... so least fixpoint is {a}, which is correct
- For $f(x) = \{a\} x$, function is not monotonic, so not guaranteed to have a fixpoint!
- Important observation: as soon as the chain repeats, we have found the fixpoint (why?)

Proof of fixpoint theorem

• First, prove that largest element of chain $f^n(\bot)$ is a fixpoint

• Second, prove that $f^n(\bot)$ is the *least* fixpoint

Solving equations

• If D is a domain and $f:D \to D$ is a monotone function on that domain, then the equation f(x) = x has a least fixpoint, given by the largest element in the sequence

```
\perp, f(\perp), f(f(\perp)), f(f(f(\perp))) ...
```

Proof follows directly from fixpoint theorem

Adding a top

- Now let us consider domains with an element \top , such that for every point x in the domain, $x \sqsubseteq \top$
- New theorem: if D is a domain with a greatest element \top and $f:D\to D$ is monotonic, then the equation x=f(x) has a greatest solution, and that solution is the smallest element in the sequence

$$\top$$
, f(\top), f(f(\top)), ...

Proof?

Multi-argument functions

- If D is a domain, a function $f: D \times D \rightarrow D$ is monotonic if it is monotonic in each argument when the other is held constant
- Intuition:
 - Electrical circuit has two inputs
 - If you raise either input while holding the other constant, the output either goes up or stays the same

Fixpoints of multi-arg functions

- Can generalize fixpoint theorem in a straightforward way
- If D is a domain and $f, g: D \times D \rightarrow D$ are monotonic, the following system of equations has a least fixpoint solution, calculated in the obvious way

$$x = f(x, y)$$
 and $y = g(x, y)$

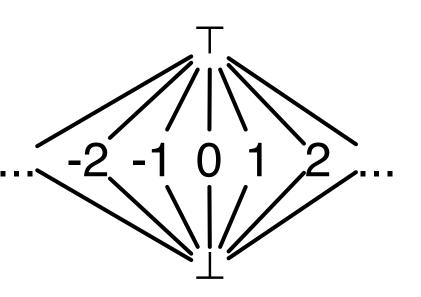
 Can generalize this to more than two variables and domains with greatest elements easily

Lattices

- A bounded *lattice* is a partially ordered set with a \bot and \top , with two special functions for any pair of points x and y in the lattice:
 - A join: $x \sqcup y$ is the least element that is greater than x and y (also called the least upper bound)
 - A meet: $x \sqcap y$ is the greatest element that is less than x and y (also called the greatest lower bound)
- Are □ and □ monotonic?

More about lattices

- Bounded lattices with a finite number of elements are a special case of domains with T
 (why are they not the same?)
 - Systems of monotonic functions (including
 □ and □) will have fixpoints
- But some lattices are infinite! (example: the lattice for constant propagation)
 - It turns out that you can show a monotonic function will have a least fixpoint for any lattice (or domain) of finite height
 - Finite height: any totally ordered subset of domain (this is called a *chain*) must be finite
 - Why does this work?



Solving system of equations

Consider

$$x = f(x, y, z)$$
$$y = g(x, y, z)$$
$$z = h(x, y, z)$$

 Obvious iterative solution: evaluate every function at every step:

$$\perp$$
 f(\perp , \perp , \perp) ...
 \perp g(\perp , \perp , \perp) ...
 \perp h(\perp , \perp , \perp) ...

Worklist algorithm

- Obvious point: only necessary to re-evaluate functions whose "important" inputs have changed
- Worklist algorithm
 - Initialize worklist with all equations
 - Initialize solution vector S to all \perp
 - While worklist not empty
 - Get equation from worklist
 - Re-evaluate equation based on S, update entry corresponding to lhs in S
 - Put all equations which use this lhs on their rhs in the worklist
- Claim: the worklist algorithm for constant propagation is an instance of this approach

Mapping worklist algorithm

- Careful: the "variables" in constant propagation are not the individual variable values in a state vector. Each variable (from a fixpoint perspective) is an entire state vector – there are as many variables as there are edges in the CFG
- Functions:
 - Program statements: eval(e, V_{in})
 - These are called *transfer functions*
 - Need to make sure this is monotonic
 - Branches
 - Propagates input state vector to output trivially monotonic
 - Merges
 - Use join or meet to combine multiple input variables monotonic by definition

Constant propagation

- Step I: choose lattice
 - Use constant lattice (infinite, but finite height)
- Step 2: choose direction of dataflow
 - Run forward through program
- Step 3: create monotonic transfer functions
 - If input goes from \bot to constant, output can only go up. If input goes from constant to \top , output goes to \top
- Step 4: choose confluence operator
 - What do do at merges? For constant propagation, use join