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Program optimizations

• So far we have talked about different kinds of optimizations

• Peephole optimizations

• Local common sub-expression elimination

• Loop optimizations

• What about global optimizations

• Optimizations across multiple basic blocks (usually a 
whole procedure)

• Not just a single loop
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Useful optimizations
• Common subexpression elimination (global)

• Need to know which expressions are available at a point

• Dead code elimination

• Need to know if the effects of a piece of code are never 
needed, or if code cannot be reached

• Constant folding

• Need to know if variable has a constant value

• Loop invariant code motion

• Need to know where and when variables are live

• So how do we get this information?
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Dataflow analysis

• Framework for doing compiler analyses to drive optimization

• Works across basic blocks

• Examples

• Constant propagation: determine which variables are 
constant

• Liveness analysis: determine which variables are live

• Available expressions: determine which expressions are 
have valid computed values

• Reaching definitions: determine which definitions could 
“reach” a use
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Example: constant propagation
• Goal: determine when variables take on constant values

• Why? Can enable many optimizations

• Constant folding

• Create dead code

x = 1;
y = x + 2;
if (x > z) then y = 5
... y ...

x = 1;
y = x + 2;
if (y > x) then y = 5
... y ...
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Example: constant propagation
• Goal: determine when variables take on constant values

• Why? Can enable many optimizations

• Constant folding

• Create dead code

x = 1;
y = x + 2;
if (x > z) then y = 5
... y ...

x = 1;
y = 3;
if (x > z) then y = 5
... y ...

x = 1;
y = x + 2;
if (y > x) then y = 5
... y ...
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Example: constant propagation
• Goal: determine when variables take on constant values

• Why? Can enable many optimizations

• Constant folding

• Create dead code

x = 1;
y = x + 2;
if (x > z) then y = 5
... y ...

x = 1;
y = 3;
if (x > z) then y = 5
... y ...

x = 1;
y = x + 2;
if (y > x) then y = 5
... y ...

x = 1;
y = 3; //dead code
if (true) then y = 5 //simplify!
... y ...
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How can we find constants?

• Ideal: run program and see which variables are constant

• Problem: variables can be constant with some inputs, not 
others – need an approach that works for all inputs!

• Problem: program can run forever (infinite loops?) – 
need an approach that we know will finish

• Idea: run program symbolically

• Essentially, keep track of whether a variable is constant 
or not constant (but nothing else)
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Overview of algorithm

• Build control flow graph

• We’ll use statement-level CFG (with merge nodes) for 
this

• Perform symbolic evaluation

• Keep track of whether variables are constant or not

• Replace constant-valued variable uses with their values, try 
to simplify expressions and control flow
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Build CFG

x = 1;
y = x + 2;
if (y > x) then y = 5;
... y ...

x = 1

y = x + 2

y > x ?

y = 5

merge

... y ...

start

end
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Symbolic evaluation

• Idea: replace each value with a 
symbol

• constant (specify which), 
maybe constant, definitely not 
constant

• Can organize these possible 
values in a lattice (will formalize 
this later)

⊤

... -2 -1 0 1 2 ...

⊥
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Symbolic evaluation

• Evaluate expressions symbolically: 
eval(e, Vin)

• If e evaluates to a constant, 
return that value. If any input is 
⊤ (or ⊥), return ⊤ (or ⊥)

• Why?

• Two special operations on lattice

• meet(a, b) – highest value less 
than or equal to both a and b

• join(a, b) – lowest value greater 
than or equal to both a and b

⊤

... -2 -1 0 1 2 ...

⊥

Join often written as a ⨆ b
Meet often written as a ⨅ b
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Putting it together

• Keep track of the symbolic value of 
a variable at every program point 
(on every CFG edge)

• State vector

• What should our initial value be?

• Starting state vector is all ⊤

• Can’t make any assumptions 
about inputs – must assume 
not constant

• Everything else starts as ⊥, since 
we don’t know if the variable is 
constant or not at that point

x = 1

y = x + 2

y > x ?

y = 5

merge

... y ...

⊤ ⊤

x y
start

end

⊥ ⊥

⊥ ⊥

⊥ ⊥

⊥ ⊥

⊥ ⊥

⊥ ⊥

⊥ ⊥
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x = 1

y = x + 2

y > x ?

y = 5

merge

... y ...

⊤ ⊤

x y
start

end

⊥ ⊥

⊥ ⊥

⊥ ⊥

⊥ ⊥

⊥ ⊥

⊥ ⊥

⊥ ⊥

Executing symbolically
• For each statement t = e 

evaluate e using Vin, update value 
for t and propagate state vector to 
next statement

• What about switches?

• If e is true or false, propagate Vin 
to appropriate branch

• What if we can’t tell?

• Propagate Vin to both 
branches, and symbolically 
execute both sides

• What do we do at merges?
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Handling merges
• Have two different Vins coming from two 

different paths

• Goal: want new value for Vin to be safe 
(shouldn’t generate wrong information), and 
we don’t know which path we actually took

• Consider a single variable. Several situations:

• V1 = ⊥, V2 = * → Vout = *

• V1 = constant x, V2 = x → Vout = x

• V1 = constant x, V2 = constant y → Vout = ⊤

• V1 = ⊤, V2 = * → Vout = ⊤

• Generalization:

• Vout = V1 ⨆ V2

⊤

... -2 -1 0 1 2 ...

⊥
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Result: worklist algorithm
• Associate state vector with each edge of CFG, initialize all 

values to ⊥, worklist has just start edge

• While worklist not empty, do:

Process the next edge from worklist

Symbolically evaluate target node of edge using input state vector

If target node is assignment (x = e), propagate Vin[eval(e)/x] to 
output edge

If target node is branch (e?)

	 If eval(e) is true or false, propagate Vin to appropriate 
	 output edge

	 Else, propagate Vin along both output edges

If target node is merge, propagate join(all Vin) to output edge

If any output edge state vector has changed, add it to worklist
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Running example

x = 1

y = x + 2

y > x ?

y = 5

merge

... y ...

⊤ ⊤

x y
start

end

⊥ ⊥

⊥ ⊥

⊥ ⊥

⊥ ⊥

⊥ ⊥

⊥ ⊥

⊥ ⊥
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Running example

x = 1

y = x + 2

y > x ?

y = 5

merge

... y ...

⊤ ⊤

x y
start

end

1 ⊥

1 2

1 2

⊥ ⊥

1 5

1 5

1 5

⊤
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What do we do about loops?

• Unless a loop never executes, symbolic execution looks like 
it will keep going around to the same nodes over and over 
again

• Insight: if the input state vector(s) for a node don’t change, 
then its output doesn’t change

• If input stops changing, then we are done!

• Claim: input will eventually stop changing. Why?

Friday, November 16, 12

Loop example

First time through loop, x = 1
Subsequent times, x = ⊤

x = 1

...

merge

x < 100?

start

end

...

x = x + 1
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Complexity of algorithm

• V = # of variables, E = # of edges

• Height of lattice = 2 → each state vector can be updated at 
most 2 * V times.

• So each edge is processed at most 2 * V times, so we 
process at most 2 * E * V elements in the worklist.

• Cost to process a node: O(V)

• Overall, algorithm takes O(EV2) time
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Question

• Can we generalize this algorithm and use it for more 
analyses?

• First, let’s lay the theoretical foundation for dataflow 
analysis.
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Lattice Theory
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First, something interesting

• Brouwer Fixpoint Theorem

• Every continuous function f from a closed disk into itself 
has at least one fixed point

• More formally:

• Domain D: a convex, closed, bounded subspace in a plane 
(generalizes to higher dimensions)

• Function f : D → D

• There exists some x such that f(x) = x
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Intuition
• Consider the one-

dimensional case: mapping a 
line segment onto itself

• x ∈ [0, 1]

• f(x) ∈ [0, 1]

• There must exist some x for 
which f(x) = x

• Examples (in 2D)

• A mall directory

• Crumpling up a piece of 
graph paper

0

1

1

Friday, November 16, 12

Back to dataflow
• Game plan:

• Finite partially ordered set with least element: D

• Function f : D → D

• Monotonic function f : D → D

• ∃ fixpoint of f

• ∃ least fixpoint of f

• Generalization to case when D has a greatest element, ⊤

• ∃ greatest fixpoint of f

• Generalization to systems of equations

Friday, November 16, 12

Partially ordered set (poset)
• Set D with a relation ⊑ that is

• Reflexive: x ⊑ x

• Anti-symmetric: x ⊑ y and y ⊑ x ⇒ y = x

• Transitive: x ⊑ y, y ⊑ z ⇒ x ⊑ z

• Example: set of integers and ≤
• Graphical representation of poset

• Graph in which nodes are elements of D and relation ⊑ is 
indicated by arrows

• Usually omit reflexive and transitive arrows for legibility

• Not counting reflexive edges, graph is always a DAG (why?)

…

3

2

1

0

-1

-2

-3

..
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Another example

• Powerset of any set, ordered by ⊆ 
is a poset

• In the example, poset elements are 
{}, {a}, {a, b}, {a, b, c}, etc.

• X ⊑ Y iff X ⊆ Y

{ }

{a}      {b}      {c}

{a,b}     {a,c}      {b,c}

{a,b,c}
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Finite poset with least element

• Poset in which

• Set is finite

• There is a least element that is below all other elements in poset

• Examples

• Set of integers ordered by ≤ is not a finite poset with least 
element (no least element,  not finite)

• Set of natural numbers ordered by ≤ has a least element (0), but 
not finite

• Set of factors of 12, ordered by ≤ has a least element as is finite

• Powerset example from before is finite (how many elements?) 
with a least element ({ })
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Domains

• “Finite poset with least element” is a mouthful, so we will 
abbreviate this to domain

• Later, we will add additional conditions to domains that are 
of interest to us in the context of dataflow analysis

• (Goal: what is a lattice?)
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Functions on domains

• If D is a domain, we can define a function f : D → D

• Function maps each element of domain on to another 
element of the domain

• Example: for D = powerset of {a, b, c}

• f(x) = x ∪ {a}

• g(x) = x – {a}

• h(x) = {a} – x
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Monotonic functions

• A function f : D → D on a domain D is monotonic if

• x ⊑ y ⇒ f(x) ⊑ f(y)

• Note: this is not the same as x ⊑ f(x)

• This means that x is extensive

• Intuition: think of f as an electrical circuit mapping input to 
output

• If f is monotonic, raising the input voltage raises the 
output voltage (or keeps it the same)

• If f is extensive, the output voltage is always the same or 
more than the input voltage
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Examples
• Domain D is the powerset of {a, b, c}

• Montonic functions:

• f(x) = { } (why?)

• f(x) = x ∪ {a}

• f(x) = x - {a}

• Not monotonic

• f(x) = {a} - x (why?)

• Extensivity

• f(x) = x ∪ {a} is monotonic and extensive

• f(x) = x - {a} is monotonic but not extensive

• f(x) = {a} - x is neither

• What is a function that is extensive, but not monotonic?
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Fixpoints

• Suppose f : D → D. 

• A value x is a fixpoint of f if f(x) = x

• f maps x to itself

• Examples: D is a powerset of {a, b, c}

• Identity function: f(x) = x

• Every element is a fixpoint

• f(x) = x ∪ {a}

• Every set that contains a is a fixpoint

• f(x) = {a} - x

• No fixpoints
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Fixpoint theorem

• One form of Knaster-Tarski Theorem:

If D is a domain and f : D → D is monotonic, then f has at 
least one fixpoint

• More interesting consequence:

If ⊥ is the least element of D, then f has a least fixpoint, and 
that fixpoint is the largest element in the chain

⊥, f(⊥), f(f(⊥)), f(f(f(⊥))) ... fn(⊥)

• Least fixpoint: a fixpoint of f, x such that, if y is a fixpoint of 
f, then x ⊑ y
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Examples

• For domain of powersets, { } is the least element

• For identity function, fn({ }) is the chain

{ }, { }, { }, ... so least fixpoint is { }, which is correct

• For f(x) = x ∪ {a}, we get the chain

{ }, {a}, {a}, ... so least fixpoint is {a}, which is correct

• For f(x) = {a} – x, function is not monotonic, so not 
guaranteed to have a fixpoint!

• Important observation: as soon as the chain repeats, we 
have found the fixpoint (why?)
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Proof of fixpoint theorem
• First, prove that largest element of chain fn(⊥) is a fixpoint

• Second, prove that fn(⊥) is the least fixpoint
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Solving equations

• If D is a domain and f : D → D is a monotone function on 
that domain, then the equation f(x) = x has a least fixpoint, 
given by the largest element in the sequence

⊥, f(⊥), f(f(⊥)), f(f(f(⊥))) ...

• Proof follows directly from fixpoint theorem
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Adding a top

• Now let us consider domains with an element ⊤, such that 
for every point x in the domain, x ⊑ ⊤

• New theorem: if D is a domain with a greatest element ⊤ 
and f : D → D is monotonic, then the equation x = f(x) has 
a greatest solution, and that solution is the smallest element 
in the sequence

⊤, f(⊤), f(f(⊤)), ...

• Proof?
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Multi-argument functions

• If D is a domain, a function f : D×D → D is monotonic if it is 
monotonic in each argument when the other is held 
constant

• Intuition:

• Electrical circuit has two inputs

• If you raise either input while holding the other 
constant, the output either goes up or stays the same
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Fixpoints of multi-arg functions

• Can generalize fixpoint theorem in a straightforward way

• If D is a domain and f, g : D×D → D are monotonic, the 
following system of equations has a least fixpoint solution, 
calculated in the obvious way

x = f(x, y) and y = g(x, y)

• Can generalize this to more than two variables and 
domains with greatest elements easily
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Lattices

• A bounded lattice is a partially ordered set with a ⊥ and ⊤, 
with two special functions for any pair of points x and y in 
the lattice:

• A join: x ⊔ y is the least element that is greater than x 
and y (also called the least upper bound)

• A meet: x ⊓ y is the greatest element that is less than x 
and y (also called the greatest lower bound)

• Are ⊔ and ⊓ monotonic?
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More about lattices

• Bounded lattices with a finite number of 
elements are a special case of domains with ⊤ 
(why are they not the same?)

• Systems of monotonic functions (including 
⊔ and ⊓) will have fixpoints

• But some lattices are infinite! (example: the 
lattice for constant propagation)

• It turns out that you can show a monotonic 
function will have a least fixpoint for any 
lattice (or domain) of finite height

• Finite height: any totally ordered subset of 
domain (this is called a chain) must be finite

• Why does this work?

⊤

... -2 -1 0 1 2 ...

⊥
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Solving system of equations
• Consider

x = f(x, y, z)

y = g(x, y, z)

z = h(x, y, z)

• Obvious iterative solution: evaluate every function at every 
step:

⊥   f(⊥,⊥,⊥)!! ...

⊥   g(⊥,⊥,⊥)! ...

⊥   h(⊥,⊥,⊥)! ...
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Worklist algorithm
• Obvious point: only necessary to re-evaluate functions whose 

“important” inputs have changed

• Worklist algorithm

• Initialize worklist with all equations

• Initialize solution vector S to all ⊥

• While worklist not empty

• Get equation from worklist

• Re-evaluate equation based on S, update entry corresponding to 
lhs in S

• Put all equations which use this lhs on their rhs in the worklist

• Claim: the worklist algorithm for constant propagation is an instance of 
this approach
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Mapping worklist algorithm
• Careful: the “variables” in constant propagation are not the individual 

variable values in a state vector. Each variable (from a fixpoint perspective) 
is an entire state vector – there are as many variables as there are edges in 
the CFG

• Functions:

• Program statements: eval(e, Vin)

• These are called transfer functions

• Need to make sure this is monotonic

• Branches

• Propagates input state vector to output – trivially monotonic

• Merges

• Use join or meet to combine multiple input variables – monotonic 
by definition
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Constant propagation

• Step 1: choose lattice

• Use constant lattice (infinite, but finite height)

• Step 2: choose direction of dataflow

• Run forward through program

• Step 3: create monotonic transfer functions

• If input goes from ⊥ to constant, output can only go up. If 
input goes from constant to ⊤, output goes to ⊤

• Step 4: choose confluence operator

• What do do at merges? For constant propagation, use join
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