
Dataflow Analysis

Friday, November 16, 12

Program optimizations

• So far we have talked about different kinds of optimizations

• Peephole optimizations

• Local common sub-expression elimination

• Loop optimizations

• What about global optimizations

• Optimizations across multiple basic blocks (usually a
whole procedure)

• Not just a single loop

Friday, November 16, 12

Useful optimizations
• Common subexpression elimination (global)

• Need to know which expressions are available at a point

• Dead code elimination

• Need to know if the effects of a piece of code are never
needed, or if code cannot be reached

• Constant folding

• Need to know if variable has a constant value

• Loop invariant code motion

• Need to know where and when variables are live

• So how do we get this information?

Friday, November 16, 12

Dataflow analysis

• Framework for doing compiler analyses to drive optimization

• Works across basic blocks

• Examples

• Constant propagation: determine which variables are
constant

• Liveness analysis: determine which variables are live

• Available expressions: determine which expressions are
have valid computed values

• Reaching definitions: determine which definitions could
“reach” a use

Friday, November 16, 12

Example: constant propagation
• Goal: determine when variables take on constant values

• Why? Can enable many optimizations

• Constant folding

• Create dead code

x = 1;
y = x + 2;
if (x > z) then y = 5
... y ...

x = 1;
y = x + 2;
if (y > x) then y = 5
... y ...

Friday, November 16, 12

Example: constant propagation
• Goal: determine when variables take on constant values

• Why? Can enable many optimizations

• Constant folding

• Create dead code

x = 1;
y = x + 2;
if (x > z) then y = 5
... y ...

x = 1;
y = 3;
if (x > z) then y = 5
... y ...

x = 1;
y = x + 2;
if (y > x) then y = 5
... y ...

Friday, November 16, 12

Example: constant propagation
• Goal: determine when variables take on constant values

• Why? Can enable many optimizations

• Constant folding

• Create dead code

x = 1;
y = x + 2;
if (x > z) then y = 5
... y ...

x = 1;
y = 3;
if (x > z) then y = 5
... y ...

x = 1;
y = x + 2;
if (y > x) then y = 5
... y ...

x = 1;
y = 3; //dead code
if (true) then y = 5 //simplify!
... y ...

Friday, November 16, 12

How can we find constants?

• Ideal: run program and see which variables are constant

• Problem: variables can be constant with some inputs, not
others – need an approach that works for all inputs!

• Problem: program can run forever (infinite loops?) –
need an approach that we know will finish

• Idea: run program symbolically

• Essentially, keep track of whether a variable is constant
or not constant (but nothing else)

Friday, November 16, 12

Overview of algorithm

• Build control flow graph

• We’ll use statement-level CFG (with merge nodes) for
this

• Perform symbolic evaluation

• Keep track of whether variables are constant or not

• Replace constant-valued variable uses with their values, try
to simplify expressions and control flow

Friday, November 16, 12

Build CFG

x = 1;
y = x + 2;
if (y > x) then y = 5;
... y ...

x = 1

y = x + 2

y > x ?

y = 5

merge

... y ...

start

end

Friday, November 16, 12

Symbolic evaluation

• Idea: replace each value with a
symbol

• constant (specify which),
maybe constant, definitely not
constant

• Can organize these possible
values in a lattice (will formalize
this later)

⊤

... -2 -1 0 1 2 ...

⊥

Friday, November 16, 12

Symbolic evaluation

• Evaluate expressions symbolically:
eval(e, Vin)

• If e evaluates to a constant,
return that value. If any input is
⊤ (or ⊥), return ⊤ (or ⊥)

• Why?

• Two special operations on lattice

• meet(a, b) – highest value less
than or equal to both a and b

• join(a, b) – lowest value greater
than or equal to both a and b

⊤

... -2 -1 0 1 2 ...

⊥

Join often written as a ⨆ b
Meet often written as a ⨅ b

Friday, November 16, 12

Putting it together

• Keep track of the symbolic value of
a variable at every program point
(on every CFG edge)

• State vector

• What should our initial value be?

• Starting state vector is all ⊤

• Can’t make any assumptions
about inputs – must assume
not constant

• Everything else starts as ⊥, since
we don’t know if the variable is
constant or not at that point

x = 1

y = x + 2

y > x ?

y = 5

merge

... y ...

⊤ ⊤

x y
start

end

⊥ ⊥

⊥ ⊥

⊥ ⊥

⊥ ⊥

⊥ ⊥

⊥ ⊥

⊥ ⊥

Friday, November 16, 12

x = 1

y = x + 2

y > x ?

y = 5

merge

... y ...

⊤ ⊤

x y
start

end

⊥ ⊥

⊥ ⊥

⊥ ⊥

⊥ ⊥

⊥ ⊥

⊥ ⊥

⊥ ⊥

Executing symbolically
• For each statement t = e

evaluate e using Vin, update value
for t and propagate state vector to
next statement

• What about switches?

• If e is true or false, propagate Vin
to appropriate branch

• What if we can’t tell?

• Propagate Vin to both
branches, and symbolically
execute both sides

• What do we do at merges?

Friday, November 16, 12

Handling merges
• Have two different Vins coming from two

different paths

• Goal: want new value for Vin to be safe
(shouldn’t generate wrong information), and
we don’t know which path we actually took

• Consider a single variable. Several situations:

• V1 = ⊥, V2 = * → Vout = *

• V1 = constant x, V2 = x → Vout = x

• V1 = constant x, V2 = constant y → Vout = ⊤

• V1 = ⊤, V2 = * → Vout = ⊤

• Generalization:

• Vout = V1 ⨆ V2

⊤

... -2 -1 0 1 2 ...

⊥

Friday, November 16, 12

Result: worklist algorithm
• Associate state vector with each edge of CFG, initialize all

values to ⊥, worklist has just start edge

• While worklist not empty, do:

Process the next edge from worklist

Symbolically evaluate target node of edge using input state vector

If target node is assignment (x = e), propagate Vin[eval(e)/x] to
output edge

If target node is branch (e?)

	 If eval(e) is true or false, propagate Vin to appropriate
	 output edge

	 Else, propagate Vin along both output edges

If target node is merge, propagate join(all Vin) to output edge

If any output edge state vector has changed, add it to worklist

Friday, November 16, 12

Running example

x = 1

y = x + 2

y > x ?

y = 5

merge

... y ...

⊤ ⊤

x y
start

end

⊥ ⊥

⊥ ⊥

⊥ ⊥

⊥ ⊥

⊥ ⊥

⊥ ⊥

⊥ ⊥

Friday, November 16, 12

Running example

x = 1

y = x + 2

y > x ?

y = 5

merge

... y ...

⊤ ⊤

x y
start

end

1 ⊥

1 2

1 2

⊥ ⊥

1 5

1 5

1 5

⊤

Friday, November 16, 12

What do we do about loops?

• Unless a loop never executes, symbolic execution looks like
it will keep going around to the same nodes over and over
again

• Insight: if the input state vector(s) for a node don’t change,
then its output doesn’t change

• If input stops changing, then we are done!

• Claim: input will eventually stop changing. Why?

Friday, November 16, 12

Loop example

First time through loop, x = 1
Subsequent times, x = ⊤

x = 1

...

merge

x < 100?

start

end

...

x = x + 1

Friday, November 16, 12

Complexity of algorithm

• V = # of variables, E = # of edges

• Height of lattice = 2 → each state vector can be updated at
most 2 * V times.

• So each edge is processed at most 2 * V times, so we
process at most 2 * E * V elements in the worklist.

• Cost to process a node: O(V)

• Overall, algorithm takes O(EV2) time

Friday, November 16, 12

Question

• Can we generalize this algorithm and use it for more
analyses?

• First, let’s lay the theoretical foundation for dataflow
analysis.

Friday, November 16, 12

Lattice Theory

Friday, November 16, 12

First, something interesting

• Brouwer Fixpoint Theorem

• Every continuous function f from a closed disk into itself
has at least one fixed point

• More formally:

• Domain D: a convex, closed, bounded subspace in a plane
(generalizes to higher dimensions)

• Function f : D → D

• There exists some x such that f(x) = x

Friday, November 16, 12

Intuition
• Consider the one-

dimensional case: mapping a
line segment onto itself

• x ∈ [0, 1]

• f(x) ∈ [0, 1]

• There must exist some x for
which f(x) = x

• Examples (in 2D)

• A mall directory

• Crumpling up a piece of
graph paper

0

1

1

Friday, November 16, 12

Back to dataflow
• Game plan:

• Finite partially ordered set with least element: D

• Function f : D → D

• Monotonic function f : D → D

• ∃ fixpoint of f

• ∃ least fixpoint of f

• Generalization to case when D has a greatest element, ⊤

• ∃ greatest fixpoint of f

• Generalization to systems of equations

Friday, November 16, 12

Partially ordered set (poset)
• Set D with a relation ⊑ that is

• Reflexive: x ⊑ x

• Anti-symmetric: x ⊑ y and y ⊑ x ⇒ y = x

• Transitive: x ⊑ y, y ⊑ z ⇒ x ⊑ z

• Example: set of integers and ≤
• Graphical representation of poset

• Graph in which nodes are elements of D and relation ⊑ is
indicated by arrows

• Usually omit reflexive and transitive arrows for legibility

• Not counting reflexive edges, graph is always a DAG (why?)

…

3

2

1

0

-1

-2

-3

..

Friday, November 16, 12

Another example

• Powerset of any set, ordered by ⊆
is a poset

• In the example, poset elements are
{}, {a}, {a, b}, {a, b, c}, etc.

• X ⊑ Y iff X ⊆ Y

{ }

{a} {b} {c}

{a,b} {a,c} {b,c}

{a,b,c}

Friday, November 16, 12

Finite poset with least element

• Poset in which

• Set is finite

• There is a least element that is below all other elements in poset

• Examples

• Set of integers ordered by ≤ is not a finite poset with least
element (no least element, not finite)

• Set of natural numbers ordered by ≤ has a least element (0), but
not finite

• Set of factors of 12, ordered by ≤ has a least element as is finite

• Powerset example from before is finite (how many elements?)
with a least element ({ })

Friday, November 16, 12

Domains

• “Finite poset with least element” is a mouthful, so we will
abbreviate this to domain

• Later, we will add additional conditions to domains that are
of interest to us in the context of dataflow analysis

• (Goal: what is a lattice?)

Friday, November 16, 12

Functions on domains

• If D is a domain, we can define a function f : D → D

• Function maps each element of domain on to another
element of the domain

• Example: for D = powerset of {a, b, c}

• f(x) = x ∪ {a}

• g(x) = x – {a}

• h(x) = {a} – x

Friday, November 16, 12

Monotonic functions

• A function f : D → D on a domain D is monotonic if

• x ⊑ y ⇒ f(x) ⊑ f(y)

• Note: this is not the same as x ⊑ f(x)

• This means that x is extensive

• Intuition: think of f as an electrical circuit mapping input to
output

• If f is monotonic, raising the input voltage raises the
output voltage (or keeps it the same)

• If f is extensive, the output voltage is always the same or
more than the input voltage

Friday, November 16, 12

Examples
• Domain D is the powerset of {a, b, c}

• Montonic functions:

• f(x) = { } (why?)

• f(x) = x ∪ {a}

• f(x) = x - {a}

• Not monotonic

• f(x) = {a} - x (why?)

• Extensivity

• f(x) = x ∪ {a} is monotonic and extensive

• f(x) = x - {a} is monotonic but not extensive

• f(x) = {a} - x is neither

• What is a function that is extensive, but not monotonic?

Friday, November 16, 12

Fixpoints

• Suppose f : D → D.

• A value x is a fixpoint of f if f(x) = x

• f maps x to itself

• Examples: D is a powerset of {a, b, c}

• Identity function: f(x) = x

• Every element is a fixpoint

• f(x) = x ∪ {a}

• Every set that contains a is a fixpoint

• f(x) = {a} - x

• No fixpoints

Friday, November 16, 12

Fixpoint theorem

• One form of Knaster-Tarski Theorem:

If D is a domain and f : D → D is monotonic, then f has at
least one fixpoint

• More interesting consequence:

If ⊥ is the least element of D, then f has a least fixpoint, and
that fixpoint is the largest element in the chain

⊥, f(⊥), f(f(⊥)), f(f(f(⊥))) ... fn(⊥)

• Least fixpoint: a fixpoint of f, x such that, if y is a fixpoint of
f, then x ⊑ y

Friday, November 16, 12

Examples

• For domain of powersets, { } is the least element

• For identity function, fn({ }) is the chain

{ }, { }, { }, ... so least fixpoint is { }, which is correct

• For f(x) = x ∪ {a}, we get the chain

{ }, {a}, {a}, ... so least fixpoint is {a}, which is correct

• For f(x) = {a} – x, function is not monotonic, so not
guaranteed to have a fixpoint!

• Important observation: as soon as the chain repeats, we
have found the fixpoint (why?)

Friday, November 16, 12

Proof of fixpoint theorem
• First, prove that largest element of chain fn(⊥) is a fixpoint

• Second, prove that fn(⊥) is the least fixpoint

Friday, November 16, 12

Solving equations

• If D is a domain and f : D → D is a monotone function on
that domain, then the equation f(x) = x has a least fixpoint,
given by the largest element in the sequence

⊥, f(⊥), f(f(⊥)), f(f(f(⊥))) ...

• Proof follows directly from fixpoint theorem

Friday, November 16, 12

Adding a top

• Now let us consider domains with an element ⊤, such that
for every point x in the domain, x ⊑ ⊤

• New theorem: if D is a domain with a greatest element ⊤
and f : D → D is monotonic, then the equation x = f(x) has
a greatest solution, and that solution is the smallest element
in the sequence

⊤, f(⊤), f(f(⊤)), ...

• Proof?

Friday, November 16, 12

Multi-argument functions

• If D is a domain, a function f : D×D → D is monotonic if it is
monotonic in each argument when the other is held
constant

• Intuition:

• Electrical circuit has two inputs

• If you raise either input while holding the other
constant, the output either goes up or stays the same

Friday, November 16, 12

Fixpoints of multi-arg functions

• Can generalize fixpoint theorem in a straightforward way

• If D is a domain and f, g : D×D → D are monotonic, the
following system of equations has a least fixpoint solution,
calculated in the obvious way

x = f(x, y) and y = g(x, y)

• Can generalize this to more than two variables and
domains with greatest elements easily

Friday, November 16, 12

Lattices

• A bounded lattice is a partially ordered set with a ⊥ and ⊤,
with two special functions for any pair of points x and y in
the lattice:

• A join: x ⊔ y is the least element that is greater than x
and y (also called the least upper bound)

• A meet: x ⊓ y is the greatest element that is less than x
and y (also called the greatest lower bound)

• Are ⊔ and ⊓ monotonic?

Friday, November 16, 12

More about lattices

• Bounded lattices with a finite number of
elements are a special case of domains with ⊤
(why are they not the same?)

• Systems of monotonic functions (including
⊔ and ⊓) will have fixpoints

• But some lattices are infinite! (example: the
lattice for constant propagation)

• It turns out that you can show a monotonic
function will have a least fixpoint for any
lattice (or domain) of finite height

• Finite height: any totally ordered subset of
domain (this is called a chain) must be finite

• Why does this work?

⊤

... -2 -1 0 1 2 ...

⊥

Friday, November 16, 12

Solving system of equations
• Consider

x = f(x, y, z)

y = g(x, y, z)

z = h(x, y, z)

• Obvious iterative solution: evaluate every function at every
step:

⊥ f(⊥,⊥,⊥)!! ...

⊥ g(⊥,⊥,⊥)! ...

⊥ h(⊥,⊥,⊥)! ...

Friday, November 16, 12

Worklist algorithm
• Obvious point: only necessary to re-evaluate functions whose

“important” inputs have changed

• Worklist algorithm

• Initialize worklist with all equations

• Initialize solution vector S to all ⊥

• While worklist not empty

• Get equation from worklist

• Re-evaluate equation based on S, update entry corresponding to
lhs in S

• Put all equations which use this lhs on their rhs in the worklist

• Claim: the worklist algorithm for constant propagation is an instance of
this approach

Friday, November 16, 12

Mapping worklist algorithm
• Careful: the “variables” in constant propagation are not the individual

variable values in a state vector. Each variable (from a fixpoint perspective)
is an entire state vector – there are as many variables as there are edges in
the CFG

• Functions:

• Program statements: eval(e, Vin)

• These are called transfer functions

• Need to make sure this is monotonic

• Branches

• Propagates input state vector to output – trivially monotonic

• Merges

• Use join or meet to combine multiple input variables – monotonic
by definition

Friday, November 16, 12

Constant propagation

• Step 1: choose lattice

• Use constant lattice (infinite, but finite height)

• Step 2: choose direction of dataflow

• Run forward through program

• Step 3: create monotonic transfer functions

• If input goes from ⊥ to constant, output can only go up. If
input goes from constant to ⊤, output goes to ⊤

• Step 4: choose confluence operator

• What do do at merges? For constant propagation, use join

Friday, November 16, 12

