Dependence Analysis

Motivating question

- Can the loops on the right be run in parallel?
- i.e., can different processors run different iterations in parallel?
- What needs to be true for a loop to be parallelizable?
- Iterations cannot interfere with each other
- No dependence between iterations

Dependences

- A flow dependence occurs when one iteration writes a location that a later iteration reads

$$
\begin{aligned}
& \text { for }(i=1 ; i<N ; i++)\{ \\
& a[i]=b[i] ; \\
& c[i]=a[i-1] ;
\end{aligned}
$$

$$
\begin{array}{lllll}
i=1 & i=2 & i=3 & i=4 & i=5
\end{array}
$$

$W(a[1])$	$W(a[2])$	$W(a[3])$	$W(a[4])$	$W(a[5])$
$R(b[1])$	$R(b[2])$	$R(b[3])$	$R(b[4])$	$R(b[5])$
$W(c[1])$	$W(c[2])$	$W(c[3])$	$W(c[4])$	$W(c[5])$
$R(a[0])$	$Z(a[1])$	$R(a[2])$	$R(a[3])$	$R(a[4])$

Running a loop in parallel

- If there is a dependence in a loop, we cannot guarantee that the loop will run correctly in parallel
- What if the iterations run out of order?
- Might read from a location before the correct value was written to it
- What if the iterations do not run in lock-step?
- Same problem!

Other kinds of dependence

- Anti dependence -When an iteration reads a location that a later iteration writes (why is this a problem?)

$$
\begin{aligned}
& \text { for }(i=1 ; i<N ; i++)\{ \\
& \quad a[i-1]=b[i] ; \\
& \quad c[i]=a[i] ;
\end{aligned}
$$

- Output dependence - When an iteration writes a location that a later iteration writes (why is this a problem?)

$$
\begin{aligned}
& \text { for }(i=1 ; i<N ; i++)\{ \\
& \quad a[i]=b[i] ; \\
& a[i+1]=c[i] ;
\end{aligned}
$$

Data dependence concepts

- Dependence source is the earlier statement (the statement at the tail of the dependence arrow)
- Dependence sink is the later statement (the statement at the head of the dependence arrow)

$$
\begin{array}{lllll}
i=1 & i=2 & i=3 & i=4 & i=5
\end{array}
$$

$$
\begin{array}{lllll}
W(a[1]) & W(a[2]) & W(a[3]) & W(a[4]) & W(a[5]) \\
R(b[1]) & R(b[2]) & R(b[3]) & R(b[4]) & R(b[5]) \\
W(c[1]) & W(c[2]) & W(c[3]) & W(c[4]) & W(c[5]) \\
R(a[0]) & R(a[1]) & R(a[2]) & R(a[3]) & R(a[4])
\end{array}
$$

- Dependences can only go forward in time: always from an earlier iteration to a later iteration.

Using dependences

- If there are no dependences, we can parallelize a loop
- None of the iterations interfere with each other
- Can also use dependence information to drive other optimizations
- Loop interchange
- Loop fusion
- (We will discuss these later)
- Two questions:
- How do we represent dependences in loops?
- How do we determine if there are dependences?

Representing dependences

- Focus on flow dependences for now
- Dependences in straight line code are easy to represent:
- One statement writes a location (variable, array location, etc.) and another reads that same location
- Can figure this out using reaching definitions
- What do we do about loops?
- We often care about dependences between the same statement in different iterations of the loop!

$$
\begin{aligned}
& \text { for }(i=1 ; i<N ; i++)\{ \\
& a[i+1]=a[i]+2
\end{aligned}
$$

Iteration space graphs

- Represent each dynamic instance of a loop as a point in a graph
- Draw arrows from one point to another to represent dependences

$$
\begin{aligned}
& \text { for }(i=0 ; i<N ; i++)\{ \\
& a[i+2]=a[i] \\
& \}
\end{aligned}
$$

Iteration space graphs

- Represent each dynamic instance of a loop as a point in a graph
- Draw arrows from one point to another to represent dependences

$$
\begin{aligned}
& \text { for }(i=0 ; i<N ; i++)\{ \\
& a[i+2]=a[i] \\
& \}
\end{aligned}
$$

- Step I: Create nodes, I for each iteration
- Note: not I for each array location!
0

Iteration space graphs

- Represent each dynamic instance of a loop as a point in a graph
- Draw arrows from one point to another to represent dependences

$$
\begin{aligned}
& \text { for }(i=0 ; i<N ; i++)\{ \\
& a[i+2]=a[i] \\
& \}
\end{aligned}
$$

- Step 2: Determine which array elements are read and written in each iteration

R: $a[5]$
R : $a[0]$
R : $a[1]$
W: $a[7]$

Iteration space graphs

- Represent each dynamic instance of a loop as a point in a graph
- Draw arrows from one point to another to represent dependences

$$
\begin{aligned}
& \text { for }(i=0 ; i<N ; i++)\{ \\
& a[i+2]=a[i] \\
& \}
\end{aligned}
$$

- Step 3: Draw arrows to represent dependences

2-D iteration space graphs

- Can do the same thing for doubly-nested loops
- 2 loop counters

$$
\begin{aligned}
& \text { for }(i=0 ; i<N ; i++) \\
& \text { for }(j=0 ; j<N ; j++) \\
& \quad a[i+1][j-2]=a[i][j]+1
\end{aligned}
$$

Iteration space graphs

- Can also represent output and anti dependences
- Use different kinds of arrows for clarity. E.g.
- \longrightarrow for output
- \longrightarrow for anti
- Crucial problem: Iteration space graphs are potentially infinite representations!
- Can we represent dependences in a more compact way?

Distance and direction vectors

- Compiler researchers have devised compressed representations of dependences
- Capture the same dependences as an iteration space graph
- May lose precision (show more dependences than the loop actually has)
- Two types
- Distance vectors: captures the "shape" of dependences, but not the particular source and sink
- Direction vectors: captures the "direction" of dependences, but not the particular shape

Distance vector

- Represent each dependence arrow in an iteration space graph as a vector
- Captures the "shape" of the dependence, but loses where the dependence originates

- Distance vector for this iteration space: (2)
- Each dependence is 2 iterations forward

2-D distance vectors

- Distance vector for this graph:
- $(1,-2)$
- +I in the i direction, -2 in the j direction
- Crucial point about distance vectors: they are always "positive"
- First non-zero entry has to be positive
- Dependences can't go

More complex example

- Can have multiple distance vectors

$$
\begin{aligned}
& \text { for }(i=0 ; i<N ; i++) \\
& \text { for }(j=0 ; j<N ; j++) \\
& \quad a[i+1][j-2]=a[i][j]+ \\
& \\
& a[i-1][j-2]
\end{aligned}
$$

(0.4)

0,3

2,3

(4,3)

0,2
(1.2)
(2,2)
3,2
(4,2)
(0.1)
(11)

(4, 1)
(0.)
(1.0)

2,0
(3,0)
4,0

More complex example

- Can have multiple distance vectors

$$
\begin{aligned}
& \text { for }(i=0 ; i<N ; i++) \\
& \text { for }(j=0 ; j<N ; j++) \\
& \qquad \begin{aligned}
a[i+1][j-2] & =a[i][j]+ \\
& a[i-1][j-2]
\end{aligned}
\end{aligned}
$$

- Distance vectors
- $(1,-2)$
- $(2,0)$
- Important point: order of
 vectors depends on order of loops, not use in arrays

Problems with distance vectors

- The preceding examples show how distance vectors can summarize all the dependences in a loop nest using just a small number of distance vectors
- Can't always summarize as easily
- Running example:

$$
\begin{aligned}
& \text { for }(i=0 ; i<N ; i++) \\
& \quad a[2 * i]=a[i] ;
\end{aligned}
$$

Write:
Read:

a[0] a[0]

a[4]
a[2]

a[6]
a[3]

a[10] $a[5]$

a[12]
a[6]

Loss of precision

- What are the distance vectors for this code?
- (1), (2), (3), (4) ...
- Note: we have information about the length of each vector, but not about the source of each vector
- What happens if we try to reconstruct the iteration space graph?

Loss of precision

- What are the distance vectors for this code?
- (1), (2), (3), (4) ...
- Note: we have information about the length of each vector, but not about the source of each vector
- What happens if we try to reconstruct the iteration space graph?

Write:
Read:

a[2]
a[1]

a[4]
a [2]

a[6]
a[3]

a[8]
a[4]
(5)
a[10]
$a[5]$

Direction vectors

- The whole point of distance vectors is that we want to be able to succinctly capture the dependences in a loop nest
- But in the previous example, not only did we add a lot of extra information, we still had an infinite number of distance vectors
- Idea: summarize distance vectors, and save only the direction the dependence was in
- $(2,-I) \rightarrow(+,-)$
- $(0, I) \rightarrow(0,+)$
- $(0,-2) \rightarrow(0,-)$
- (can't happen; dependences have to be positive)
- Notation: sometimes use ‘<' and '>’ instead of ' + ' and ' - ’

Why use direction vectors?

- Direction vectors lose a lot of information, but do capture some useful information
- Whether there is a dependence (anything other than a ' 0 ' means there is a dependence)
- Which dimension and direction the dependence is in
- Many times, the only information we need to determine if an optimization is legal is captured by direction vectors
- Loop parallelization
- Loop interchange

Loop parallelization

Loop-carried dependence

- The key concept for parallelization is the loop carried dependence
- A dependence that crosses loop iterations
- If there is a loop carried dependence, then that loop cannot be parallelized
- Some iterations of the loop depend on other iterations of the same loop

Examples

$$
\begin{aligned}
& \text { for }(i=0 ; i<N ; i++) \\
& \quad a\left[2^{*} i\right]=a[i] ;
\end{aligned}
$$

$$
\begin{aligned}
& \text { for }(i=0 ; i<N ; i++) \\
& \text { for }(j=0 ; j<N ; j++) \\
& \quad a[i+1][j-2]=a[i][j]+1
\end{aligned}
$$

Later iterations of i loop depend on earlier iterations

Later iterations of both i and
j loops depend on earlier iterations

Some subtleties

- Dependences might only be carried over one loop!

$$
\begin{aligned}
& \text { for }(i=0 ; i<N ; i++) \\
& \text { for }(j=0 ; j<N ; j++) \\
& \quad a[i][j+1]=a[i][j]+1
\end{aligned}
$$

- Can parallelize i loop, but not j loop

Some subtleties

- Dependences might only be carried over one loop!

$$
\begin{aligned}
& \text { for }(i=0 ; i<N ; i++) \\
& \text { for }(j=0 ; j<N ; j++) \\
& \quad a[i+1][j]=a[i-1][j]+1
\end{aligned}
$$

- Can parallelize j loop, but not i loop

Direction vectors

- So how do direction vectors help?
- If there is a non-zero entry for a loop dimension, that means that there is a loop carried dependence over that dimension
- If an entry is zero, then that loop can be parallelized!

Improving parallelism

- Important point: any
dependence can prevent parallelization
- Anti and output dependences are important, not just flow dependences
- But anti and output dependences can be removed by using more storage
- Like register renaming in out-of-order processors

$$
\begin{aligned}
\text { for }(i & =0 ; i<N ; i++) \\
a[i] & =a[i+1]+1 \\
& \qquad \\
\text { for }(i & =0 ; i<N ; i++) \\
\quad a & {[i]=a[i+1]+1 }
\end{aligned}
$$

- In principle, all anti and output dependences can be removed, but this is difficult
- Key question: when are there flow dependences?

Data Dependence Tests

Problem formulation

- Given the loop nest:

$$
\begin{aligned}
& \text { for }(i=0 ; i<N ; i++) \\
& \quad a[f(i)]=\ldots \\
& \ldots=a[g(i)]
\end{aligned}
$$

- A dependence exists if there exist an integer i and an i ' such that:
- $f(i)=g(i)$
- $0 \leq \mathrm{i}, \mathrm{i}<\mathrm{N}$
- If $i<i$ ', write happens before read (flow dependence)
- If $i>i$, write happens after read (anti dependence)

Loop normalization

- Loops that skip iterations can always be normalized to loops that don't, so we only need to consider loops that have unit strides
- Note: this is essentially of the reverse of linear test replacement

$$
\begin{aligned}
& \text { for }(i=L ; i<U ; i+=S) \\
& \quad \ldots a[i] \ldots
\end{aligned}
$$

$$
\begin{aligned}
& \text { for }(i=0 ; i<(U-L) / S ; i+=1) \\
& \quad \ldots a\left[S^{*} i+L\right] \ldots
\end{aligned}
$$

Diophantine equations

- An equation whose coefficients and solutions are all integers is called a Diophantine equation
- Our question:
$f(i)=a^{*} i+b \quad g(i)=c^{*} i+d$
Does $f(i)=g\left(i^{\prime}\right)$ have a solution?
- $f(i)=g\left(i^{\prime}\right) \Rightarrow a i+b=c i^{\prime}+d \Rightarrow a_{1} *_{i}+a_{2}{ }^{*} i^{\prime}=a_{3}$

Solutions to Diophantine eqns

- An equation $a_{1} *_{i}+a_{2}{ }^{*}{ }^{\prime}=a_{3}$ has a solution iff $\operatorname{gcd}\left(a_{1}, a_{2}\right)$ evenly divides a_{3}
- Examples
- $15 *_{i}+6 *_{j}-9 * k=12$ has a solution $(\operatorname{gcd}=3)$
- $2 *_{i}+7 *_{j}=3$ has a solution $(\operatorname{gcd}=1)$
- $9 *_{i}+6 *_{j}=10$ has no solution $(\mathrm{gcd}=3)$

Why does this work?

- Suppose g is the $\operatorname{gcd}(a, b)$ in $a *_{i}+b^{*}=c$
- Can rewrite equation as

$$
\begin{aligned}
& g^{*}\left(a^{\prime} *_{i}+b^{\prime} *_{j}\right)=c \\
& a^{\prime} * i+b^{\prime} * j=c / g
\end{aligned}
$$

- a' and b' are integers, and relatively prime (gcd =I) so by choosing i and j correctly, can produce any integer, but only integers
- Equation has a solution provided c / g is an integer

Finding the GCD

- Finding GCD with Euclid's algorithm
- Repeat
$\mathrm{a}=\mathrm{amod} \mathrm{b}$
swap a and b
until b is 0 (resulting a is the gcd)
- Why? If g divides a and b, then g divides $a \bmod b$

Downsides to GCD test

- If $f(i)=g\left(i^{\prime}\right)$ fails the GCD test, then there is no i, i that can produce a dependence \rightarrow loop has no dependences
- If $f(i)=g\left(i^{\prime}\right)$, there might be a dependence, but might not
- i and i that satisfy equation might fall outside bounds
- Loop may be parallelizable, but cannot tell
- Unfortunately, most loops have gcd $(a, b)=I$, which divides everything
- Other optimizations (loop interchange) can tolerate dependences in certain situations

Other dependence tests

- GCD test: doesn't account for loop bounds, does not provide useful information in many cases
- Banerjee test (Utpal Banerjee): accurate test, takes directions and loop bounds into account
- Omega test (William Pugh): even more accurate test, precise but can be very slow
- Range test (Blume and Eigenmann): works for non-linear subscripts
- Compilers tend to perform simple tests and only perform more complex tests if they cannot prove non-existence of dependence

Other loop optimizations

Loop interchange

- We've seen this one before
- Interchange doubly-nested loop to
- Improve locality
- Improve parallelism
- Move parallel loop to outer loop (coarse grained parallelism)

Loop interchange legality

- We noted that loop interchange is not always legal, because it reorders a computation
- Can we use dependences to determine legality?

Loop interchange dependences

- Consider interchanging the following loop, with the dependence graph to the right:

$$
\begin{aligned}
& \text { for }(i=0 ; i<N ; i++) \\
& \text { for }(j=0 ; j<N ; j++) \\
& \quad a[i+1][j+2]=a[i][j]+1
\end{aligned}
$$

- Distance vector $(1,2)$
- Direction vector (+, +

Loop interchange dependences

- Consider interchanging the following loop, with the dependence graph to the right:

$$
\begin{aligned}
& \text { for }(j=0 ; j<N ; j++) \\
& \text { for }(i=0 ; i<N ; i++) \\
& \quad a[i+1][j+2]=a[i][j]+1
\end{aligned}
$$

- Distance vector $(2, I)$
- Direction vector (+, +
- Distance vector gets swapped!

Loop interchange legality

- Interchanging two loops swaps the order of their entries in distance/direction vectors
- $(0,+) \rightarrow(+, 0)$
- $(+, 0) \rightarrow(0,+)$
- But remember, we can't have backwards dependences
- $(+,-) \rightarrow(-,+)$
- Illegal dependence \rightarrow Loop interchange not legal!

Loop interchange dependences

- Example of illegal interchange:

$$
\begin{aligned}
& \text { for }(i=0 ; i<N ; i++) \\
& \text { for }(j=0 ; j<N ; j++) \\
& \quad a[i+1][j-2]=a[i][j]+1
\end{aligned}
$$

Loop interchange dependences

- Example of illegal interchange:
for ($\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ; \mathrm{j}++$) for (i = 0; i < N; i++) $a[i+1][j-2]=a[i][j]+1$
- Flow dependences turned into anti-dependences
- Result of computation will change!

Loop fusion/distribution

- Loop fusion: combining two loops into a single loop
- Improves locality, parallelism
- Loop distribution: splitting a single loop into two loops
- Can increase parallelism (turn a non-parallelizable loop into a parallelizable loop)
- Legal as long as optimization maintains dependences
- Every dependence in the original loop should have a dependence in the optimized loop
- Optimized loop should not introduce new dependences

Fusion/distribution example

- Code I:
for (i = 0; $\mathrm{i}<\mathrm{N}$; $\mathrm{i}++$)
$a[i-1]=b[i]$
for ($\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ; \mathrm{j}++$)
$c[j]=a[j]$
- Dependence graph

- All red iterations finish before blue iterations \rightarrow flow dependence
- Code 2:

$$
\begin{aligned}
& \text { for }(i=0 ; i<N ; i++) \\
& a[i-1]=b[i] \\
& c[i]=a[i]
\end{aligned}
$$

- Dependence graph

- i iterations finish before i+l iterations \rightarrow flow dependence now an anti dependence!

Fusion/distribution utility

$$
\begin{array}{rlrl}
\text { for }(i & =0 ; i<N ; i++) \xrightarrow{\text { Fusion }} \text { for }(i=0 ; i<N ; i++) \\
a[i] & =a[i-1] & a[i]=a[i-1] \\
\text { for }(j & =0 ; j<N ; j++) \text { Distribution } \quad b[i]=a[i] \\
b[j] & =a[j]
\end{array}
$$

- Fusion and distribution both legal
- Right code has better locality, but cannot be parallelized due to loop carried dependences
- Left code has worse locality, but blue loop can be parallelized

