Dependence Analysis

Motivating question

- Can the loops on the right be run in parallel?
 - i.e., can different processors run different iterations in parallel?
- What needs to be true for a loop to be parallelizable?
 - Iterations cannot interfere with each other
- No dependence between iterations

```plaintext
def for (i = 1; i < N; i++) {
    a[i] = b[i];
    c[i] = a[i - 1];
}
```

```plaintext
def for (i = 1; i < N; i++) {
    a[i] = b[i];
    c[i] = a[i] + b[i - 1];
}
```

Dependences

- A **flow dependence** occurs when one iteration writes a location that a later iteration reads

```plaintext
for (i = 1; i < N; i++) {
    a[i] = b[i];
    c[i] = a[i - 1];
}
```

<table>
<thead>
<tr>
<th>i = 1</th>
<th>i = 2</th>
<th>i = 3</th>
<th>i = 4</th>
<th>i = 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>W(a[1])</td>
<td>W(a[2])</td>
<td>W(a[3])</td>
<td>W(a[4])</td>
<td>W(a[5])</td>
</tr>
<tr>
<td>R(b[1])</td>
<td>R(b[2])</td>
<td>R(b[3])</td>
<td>R(b[4])</td>
<td>R(b[5])</td>
</tr>
<tr>
<td>W(c[1])</td>
<td>W(c[2])</td>
<td>W(c[3])</td>
<td>W(c[4])</td>
<td>W(c[5])</td>
</tr>
<tr>
<td>R(a[0])</td>
<td>R(a[1])</td>
<td>R(a[2])</td>
<td>R(a[3])</td>
<td>R(a[4])</td>
</tr>
</tbody>
</table>
```

Running a loop in parallel

- If there is a dependence in a loop, we cannot guarantee that the loop will run correctly in parallel
- What if the iterations run out of order?
  - Might read from a location before the correct value was written to it
- What if the iterations do not run in lock-step?
  - Same problem!

Other kinds of dependence

- **Anti dependence** – When an iteration reads a location that a later iteration writes (why is this a problem?)

```plaintext
for (i = 1; i < N; i++) {
 a[i - 1] = b[i];
 c[i] = a[i];
}
```

- **Output dependence** – When an iteration writes a location that a later iteration writes (why is this a problem?)

```plaintext
for (i = 1; i < N; i++) {
 a[i] = b[i];
 a[i + 1] = c[i];
}
```

Data dependence concepts

- Dependence source is the earlier statement (the statement at the tail of the dependence arrow)
- Dependence sink is the later statement (the statement at the head of the dependence arrow)

```plaintext
for (i = 1; i < N; i++) {
 a[i] = b[i];
 c[i] = a[i] + b[i - 1];
}
```

<table>
<thead>
<tr>
<th>i = 1</th>
<th>i = 2</th>
<th>i = 3</th>
<th>i = 4</th>
<th>i = 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>W(a[1])</td>
<td>W(a[2])</td>
<td>W(a[3])</td>
<td>W(a[4])</td>
<td>W(a[5])</td>
</tr>
<tr>
<td>R(b[1])</td>
<td>R(b[2])</td>
<td>R(b[3])</td>
<td>R(b[4])</td>
<td>R(b[5])</td>
</tr>
<tr>
<td>W(c[1])</td>
<td>W(c[2])</td>
<td>W(c[3])</td>
<td>W(c[4])</td>
<td>W(c[5])</td>
</tr>
<tr>
<td>R(a[0])</td>
<td>R(a[1])</td>
<td>R(a[2])</td>
<td>R(a[3])</td>
<td>R(a[4])</td>
</tr>
</tbody>
</table>
```

- Dependences can only go forward in time: always from an earlier iteration to a later iteration.
Using dependences

- If there are no dependences, we can parallelize a loop
- None of the iterations interfere with each other
- Can also use dependence information to drive other optimizations
- Loop interchange
- Loop fusion
- (We will discuss these later)
- Two questions:
 - How do we represent dependences in loops?
 - How do we determine if there are dependences?

Representing dependences

- Focus on flow dependences for now
- Dependences in straight line code are easy to represent:
 - One statement writes a location (variable, array location, etc.) and another reads that same location
 - Can figure this out using reaching definitions
- What do we do about loops?
 - We often care about dependences between the same statement in different iterations of the loop!

  ```
  for (i = 1; i < N; i++) {
    a[i + 1] = a[i] + 2
  }
  ```

Iteration space graphs

- Represent each dynamic instance of a loop as a point in a graph
- Draw arrows from one point to another to represent dependences

  ```
  for (i = 0; i < N; i++) {
    a[i + 2] = a[i]
  }
  ```

- Step 1: Create nodes, I for each iteration
 - Note: not I for each array location!

- Step 2: Determine which array elements are read and written in each iteration

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
</table>

- Step 3: Draw arrows to represent dependences

  ```
  ```
2-D iteration space graphs

- Can do the same thing for doubly-nested loops
- 2 loop counters
  ```
  for (i = 0; i < N; i++)
  for (j = 0; j < N; j++)
  a[i+1][j-2] = a[i][j] + 1
  ```

Iteration space graphs

- Can also represent output and anti dependences
- Use different kinds of arrows for clarity. E.g.
 - [•] for output
 - [---] for anti
- Crucial problem: Iteration space graphs are potentially infinite representations!
- Can we represent dependences in a more compact way?

Distance and direction vectors

- Compiler researchers have devised compressed representations of dependences
- Capture the same dependences as an iteration space graph
- May lose precision (show more dependences than the loop actually has)
- Two types
 - Distance vectors: captures the “shape” of dependences, but not the particular source and sink
 - Direction vectors: captures the “direction” of dependences, but not the particular shape

Distance vector

- Represent each dependence arrow in an iteration space graph as a vector
- Captures the “shape” of the dependence, but loses where the dependence originates
- Distance vector for this iteration space: (2)
- Each dependence is 2 iterations forward

2-D distance vectors

- Distance vector for this graph:
 - (1, -2)
 - +1 in the i direction, -2 in the j direction
- Crucial point about distance vectors: they are always “positive”
- First non-zero entry has to be positive
- Dependences can’t go backwards in time

More complex example

- Can have multiple distance vectors
  ```
  for (i = 0; i < N; i++)
  for (j = 0; j < N; j++)
  a[i+1][j-2] = a[i][j] + a[i-1][j-2]
  ```
More complex example

- Can have multiple distance vectors

  ```
  for (i = 0; i < N; i++)
  for (j = 0; j < N; j++)
  a[i+1][j-2] = a[i][j] + a[i-1][j-2]
  ```

- Distance vectors
 - (1, -2)
 - (2, 0)

- Important point: order of vectors depends on order of loops, not use in arrays

Problems with distance vectors

- The preceding examples show how distance vectors can summarize all the dependences in a loop nest using just a small number of distance vectors
- Can’t always summarize as easily
- Running example:

  ```
  for (i = 0; i < N; i++)
  a[2*i] = a[i];
  ```

Loss of precision

- What are the distance vectors for this code?
 - (1), (2), (3), (4) ...
- Note: we have information about the length of each vector, but not about the source of each vector
- What happens if we try to reconstruct the iteration space graph?

Direction vectors

- The whole point of distance vectors is that we want to be able to succinctly capture the dependences in a loop nest
- But in the previous example, not only did we add a lot of extra information, we still had an infinite number of distance vectors
- Idea: summarize distance vectors, and save only the direction the dependence was in
 - (2, -1) → (+, –)
 - (0, 1) → (0, +)
 - (0, -2) → (0, –)
 - (can’t happen; dependences have to be positive)
 - Notation: sometimes use ‘<’ and ‘>’ instead of ‘+’ and ‘–’

Why use direction vectors?

- Direction vectors lose a lot of information, but do capture some useful information
- Whether there is a dependence (anything other than a ‘0’ means there is a dependence)
- Which dimension and direction the dependence is in
- Many times, the only information we need to determine if an optimization is legal is captured by direction vectors
 - Loop parallelization
 - Loop interchange
Loop parallelization

Loop-carried dependence

- The key concept for parallelization is the loop carried dependence
- A dependence that crosses loop iterations
- If there is a loop carried dependence, then that loop cannot be parallelized
- Some iterations of the loop depend on other iterations of the same loop

Examples

```c
for (i = 0; i < N; i++)
a[2*i] = a[i];
```

Later iterations of `i` loop depend on earlier iterations

```c
for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
a[i+1][j-2] = a[i][j] + 1
```

Later iterations of both `i` and `j` loops depend on earlier iterations

Some subtleties

- Dependences might only be carried over one loop!
- Can parallelize `j` loop, but not `i` loop

Direction vectors

- So how do direction vectors help?
- If there is a non-zero entry for a loop dimension, that means that there is a loop carried dependence over that dimension
- If an entry is zero, then that loop can be parallelized!

Some subtleties

- Dependences might only be carried over one loop!
- Can parallelize `j` loop, but not `i` loop
Improving parallelism

- Important point: any dependence can prevent parallelization
- Anti and output dependences are important, not just flow dependences
- But anti and output dependences can be removed by using more storage
- Like register renaming in out-of-order processors
- In principle, all anti and output dependences can be removed, but this is difficult
- Key question: when are there flow dependences?

Data Dependence Tests

for (i = 0; i < N; i++)
 a[i] = a[i + 1] + 1

Problem formulation

- Given the loop nest:
 for (i = 0; i < N; i++)
 a[f(i)] = ... = a[g(i)]
- A dependence exists if there exist an integer i and an i' such that:
 - f(i) = g(i')
 - 0 ≤ i, i' < N
 - If i < i', write happens before read (flow dependence)
 - If i > i', write happens after read (anti dependence)

Loop normalization

- Loops that skip iterations can always be normalized to loops that don't, so we only need to consider loops that have unit strides
- Note: this is essentially the reverse of linear test replacement

Diophantine equations

- An equation whose coefficients and solutions are all integers is called a Diophantine equation

 f(i) = a_1i + b
 g(i) = c_1i + d

- Our question:
 Does f(i) = g(i) have a solution?

 \[f(i) = g(i') \Rightarrow ai + b = ci' + d \Rightarrow a_1i + a_2i' = a_3 \]

Solutions to Diophantine eqns

- An equation \(a_1i + a_2i' = a_3 \) has a solution \(\text{iff } \gcd(a_1, a_2) \text{ evenly divides } a_3 \)
- Examples
 - \(15i + 6j - 9k = 12 \) has a solution \(\gcd = 3 \)
 - \(2i + 3j = 10 \) has a solution \(\gcd = 1 \)
 - \(9i + 6j = 10 \) has no solution \(\gcd = 3 \)
Why does this work?

- Suppose \(g\) is the \(\gcd(a,b)\) in \(a^i + b^j = c\).
- Can rewrite equation as
 \[g(a^i + b^j) = c\]
 \[a^i + b^j = c/g\]
- \(a^i\) and \(b^j\) are integers, and relatively prime (\(\gcd = 1\)) so by choosing \(i\) and \(j\) correctly, can produce any integer, but only integers.
- Equation has a solution provided \(c/g\) is an integer.

Finding the GCD

- Finding GCD with Euclid's algorithm
- Repeat
 \[a = a \mod b\]
 swap \(a\) and \(b\)
 until \(b\) is 0 (resulting \(a\) is the \(\gcd\))
- Why? If \(g\) divides \(a\) and \(b\), then \(g\) divides \(a \mod b\).

Downsides to GCD test

- If \(f(i) = g(i')\) fails the GCD test, then there is no \(i, i'\) that can produce a dependence → loop has no dependences.
- If \(f(i) = g(i')\), there might be a dependence, but might not
 - \(i\) and \(i'\) that satisfy equation might fall outside bounds.
 - Loop may be parallelizable, but cannot tell.
- Unfortunately, most loops have \(\gcd(a,b) = 1\), which divides everything.
- Other optimizations (loop interchange) can tolerate dependences in certain situations.

Other dependence tests

- GCD test: doesn't account for loop bounds, does not provide useful information in many cases.
- Banerjee test (Utpal Banerjee): accurate test, takes directions and loop bounds into account.
- Omega test (William Pugh): even more accurate test, precise but can be very slow.
- Range test (Blume and Eigenmann): works for non-linear subscripts.
- Compilers tend to perform simple tests and only perform more complex tests if they cannot prove non-existence of dependence.

Other loop optimizations

- Loop interchange
 - We've seen this one before.
 - Interchange doubly-nested loop to
 - Improve locality.
 - Improve parallelism.
 - Move parallel loop to outer loop (coarse grained parallelism).
Loop interchange legality

- We noted that loop interchange is not always legal, because it reorders a computation.
- Can we use dependences to determine legality?

Loop interchange dependences

- Consider interchanging the following loop, with the dependence graph to the right:

 \[
 \text{for } (i = 0; i < N; i++) \\
 \text{for } (j = 0; j < N; j++) \\
 a[i+1][j+2] = a[i][j] + 1
 \]

 - Distance vector (1, 2)
 - Direction vector (+, +)

 - Loop interchange not legal!

Loop interchange legality

- Interchanging two loops swaps the order of their entries in distance/direction vectors.

 - \((0, +) \rightarrow (+, 0)\)
 - \((+, 0) \rightarrow (0, +)\)

- But remember, we can’t have backwards dependences.

 - \((+, -) \rightarrow (-, +)\)
 - Illegal dependence \(\rightarrow\) Loop interchange not legal!

Loop interchange dependences

- Example of illegal interchange:

 \[
 \text{for } (i = 0; i < N; i++) \\
 \text{for } (j = 0; j < N; j++) \\
 a[i+1][j-2] = a[i][j] + 1
 \]

 - Flow dependences turned into anti-dependences.
 - Result of computation will change!
Loop fusion/distribution

- Loop fusion: combining two loops into a single loop
- Improves locality, parallelism
- Loop distribution: splitting a single loop into two loops
- Can increase parallelism (turn a non-parallelizable loop into a parallelizable loop)
- Legal as long as optimization maintains dependences
- Every dependence in the original loop should have a dependence in the optimized loop
- Optimized loop should not introduce new dependences

Fusion/distribution example

- Code 1:
 for (i = 0; i < N; i++)
 a[i - 1] = b[i]
 for (j = 0; j < N; j++)
 c[j] = a[j]

- Dependence graph

- All red iterations finish before blue iterations → flow dependence

- Code 2:
 for (i = 0; i < N; i++)
 a[i - 1] = b[i]
 c[i] = a[i]

- Dependence graph

- i iterations finish before i+1 iterations → flow dependence now an anti dependence!

Fusion/distribution utility

- for (i = 0; i < N; i++) Fusion for (i = 0; i < N; i++)
 a[i] = a[i - 1]
 a[i] = a[i - 1]

- for (j = 0; j < N; j++) Distribution b[j] = a[j]
 b[j] = a[j]

- Fusion and distribution both legal
- Right code has better locality, but cannot be parallelized due to loop carried dependences
- Left code has worse locality, but blue loop can be parallelized