
Dependence Analysis

Wednesday, November 7, 12

Motivating question
• Can the loops on the right

be run in parallel?

• i.e., can different
processors run
different iterations in
parallel?

• What needs to be true for
a loop to be parallelizable?

• Iterations cannot
interfere with each
other

• No dependence
between iterations

for (i = 1; i < N; i++) {
a[i] = b[i];
c[i] = a[i - 1];

}

for (i = 1; i < N; i++) {
 a[i] = b[i];
 c[i] = a[i] + b[i - 1];
}

Wednesday, November 7, 12

Dependences
• A flow dependence occurs when one iteration writes a

location that a later iteration reads

for (i = 1; i < N; i++) {
a[i] = b[i];
c[i] = a[i - 1];

}

i = 1

W(a[1])
R(b[1])
W(c[1])
R(a[0])

i = 2

W(a[2])
R(b[2])
W(c[2])
R(a[1])

i = 3

W(a[3])
R(b[3])
W(c[3])
R(a[2])

i = 4

W(a[4])
R(b[4])
W(c[4])
R(a[3])

i = 5

W(a[5])
R(b[5])
W(c[5])
R(a[4])

Wednesday, November 7, 12

Running a loop in parallel

• If there is a dependence in a loop, we cannot guarantee that
the loop will run correctly in parallel

• What if the iterations run out of order?

• Might read from a location before the correct value
was written to it

• What if the iterations do not run in lock-step?

• Same problem!

Wednesday, November 7, 12

Other kinds of dependence
• Anti dependence – When an iteration reads a location that a

later iteration writes (why is this a problem?)

• Output dependence – When an iteration writes a location
that a later iteration writes (why is this a problem?)

for (i = 1; i < N; i++) {
a[i - 1] = b[i];
c[i] = a[i];

}

for (i = 1; i < N; i++) {
a[i] = b[i];
a[i + 1] = c[i];

}

Wednesday, November 7, 12

Data dependence concepts
• Dependence source is the earlier statement (the statement

at the tail of the dependence arrow)

• Dependence sink is the later statement (the statement at
the head of the dependence arrow)

• Dependences can only go forward in time: always from an
earlier iteration to a later iteration.

i = 1

W(a[1])
R(b[1])
W(c[1])
R(a[0])

i = 2

W(a[2])
R(b[2])
W(c[2])
R(a[1])

i = 3

W(a[3])
R(b[3])
W(c[3])
R(a[2])

i = 4

W(a[4])
R(b[4])
W(c[4])
R(a[3])

i = 5

W(a[5])
R(b[5])
W(c[5])
R(a[4])

Wednesday, November 7, 12

Using dependences
• If there are no dependences, we can parallelize a loop

• None of the iterations interfere with each other

• Can also use dependence information to drive other
optimizations

• Loop interchange

• Loop fusion

• (We will discuss these later)

• Two questions:

• How do we represent dependences in loops?

• How do we determine if there are dependences?

Wednesday, November 7, 12

Representing dependences
• Focus on flow dependences for now

• Dependences in straight line code are easy to represent:

• One statement writes a location (variable, array
location, etc.) and another reads that same location

• Can figure this out using reaching definitions

• What do we do about loops?

• We often care about dependences between the same
statement in different iterations of the loop!

for (i = 1; i < N; i++) {
a[i + 1] = a[i] + 2

}

Wednesday, November 7, 12

Iteration space graphs
• Represent each dynamic instance of a loop as a point in a

graph

• Draw arrows from one point to another to represent
dependences

for (i = 0; i < N; i++) {
a[i + 2] = a[i]

}

Wednesday, November 7, 12

Iteration space graphs
• Represent each dynamic instance of a loop as a point in a

graph

• Draw arrows from one point to another to represent
dependences

• Step 1: Create nodes, 1 for each iteration

• Note: not 1 for each array location!

for (i = 0; i < N; i++) {
a[i + 2] = a[i]

}

0 1 2 3 4 5

Wednesday, November 7, 12

0 1 2 3 4 5

R: a[0]

W: a[2]

R: a[1]

W: a[3]

R: a[2]

W: a[4]

R: a[3]

W: a[5]

R: a[4]

W: a[6]

R: a[5]

W: a[7]

Iteration space graphs
• Represent each dynamic instance of a loop as a point in a

graph

• Draw arrows from one point to another to represent
dependences

• Step 2: Determine which array elements are read and
written in each iteration

for (i = 0; i < N; i++) {
a[i + 2] = a[i]

}

Wednesday, November 7, 12

• Represent each dynamic instance of a loop as a point in a
graph

• Draw arrows from one point to another to represent
dependences

• Step 3: Draw arrows to represent dependences

0 1 2 3 4 5

R: a[0]

W: a[2]

R: a[1]

W: a[3]

R: a[2]

W: a[4]

R: a[3]

W: a[5]

R: a[4]

W: a[6]

R: a[5]

W: a[7]

Iteration space graphs

for (i = 0; i < N; i++) {
a[i + 2] = a[i]

}

Wednesday, November 7, 12

2-D iteration space graphs

• Can do the same thing
for doubly-nested loops

• 2 loop counters

for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 a[i+1][j-2] = a[i][j] + 1

0,4 1,4 2,4 3,4 4,4

0,3 1,3 2,3 3,3 4,3

0,2 1,2 2,2 3,2 4,2

0,1 1,1 2,1 3,1 4,1

0,0 1,0 2,0 3,0 4,0

i

j

Wednesday, November 7, 12

Iteration space graphs

• Can also represent output and anti dependences

• Use different kinds of arrows for clarity. E.g.

• for output

• for anti

• Crucial problem: Iteration space graphs are potentially
infinite representations!

• Can we represent dependences in a more compact way?

Wednesday, November 7, 12

Distance and direction vectors

• Compiler researchers have devised compressed
representations of dependences

• Capture the same dependences as an iteration space
graph

• May lose precision (show more dependences than the
loop actually has)

• Two types

• Distance vectors: captures the “shape” of dependences,
but not the particular source and sink

• Direction vectors: captures the “direction” of
dependences, but not the particular shape

Wednesday, November 7, 12

Distance vector
• Represent each dependence arrow in an iteration space

graph as a vector

• Captures the “shape” of the dependence, but loses where
the dependence originates

• Distance vector for this iteration space: (2)

• Each dependence is 2 iterations forward

0 1 2 3 4 5

R: a[0]

W: a[2]

R: a[1]

W: a[3]

R: a[2]

W: a[4]

R: a[3]

W: a[5]

R: a[4]

W: a[6]

R: a[5]

W: a[7]

Wednesday, November 7, 12

2-D distance vectors
• Distance vector for this

graph:

• (1, -2)

• +1 in the i direction, -2
in the j direction

• Crucial point about
distance vectors: they are
always “positive”

• First non-zero entry
has to be positive

• Dependences can’t go
backwards in time

0,4 1,4 2,4 3,4 4,4

0,3 1,3 2,3 3,3 4,3

0,2 1,2 2,2 3,2 4,2

0,1 1,1 2,1 3,1 4,1

0,0 1,0 2,0 3,0 4,0

i

j

Wednesday, November 7, 12

More complex example
• Can have multiple

distance vectors

for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 a[i+1][j-2] = a[i][j] +

a[i-1][j-2]

0,4 1,4 2,4 3,4 4,4

0,3 1,3 2,3 3,3 4,3

0,2 1,2 2,2 3,2 4,2

0,1 1,1 2,1 3,1 4,1

0,0 1,0 2,0 3,0 4,0

Wednesday, November 7, 12

0,4 1,4 2,4 3,4 4,4

0,3 1,3 2,3 3,3 4,3

0,2 1,2 2,2 3,2 4,2

0,1 1,1 2,1 3,1 4,1

0,0 1,0 2,0 3,0 4,0

More complex example
• Can have multiple

distance vectors

• Distance vectors

• (1, -2)

• (2, 0)

• Important point: order of
vectors depends on order
of loops, not use in arrays

for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 a[i+1][j-2] = a[i][j] +

a[i-1][j-2]

Wednesday, November 7, 12

Problems with distance vectors
• The preceding examples show how distance vectors can

summarize all the dependences in a loop nest using just a
small number of distance vectors

• Can’t always summarize as easily

• Running example:

for (i = 0; i < N; i++)
a[2*i] = a[i];

1 2 3 4 50

Write:

Read:

a[0]

a[0]

a[2]

a[1]

a[4]

a[2]

a[6]

a[3]

a[8]

a[4]

a[10]

a[5]

6

a[12]

a[6]

Wednesday, November 7, 12

Loss of precision
• What are the distance vectors for this code?

• (1), (2), (3), (4) ...

• Note: we have information about the length of each vector,
but not about the source of each vector

• What happens if we try to reconstruct the iteration
space graph?

1 2 3 4 50

Write:

Read:

a[0]

a[0]

a[2]

a[1]

a[4]

a[2]

a[6]

a[3]

a[8]

a[4]

a[10]

a[5]

6

a[12]

a[6]

Wednesday, November 7, 12

Loss of precision
• What are the distance vectors for this code?

• (1), (2), (3), (4) ...

• Note: we have information about the length of each vector,
but not about the source of each vector

• What happens if we try to reconstruct the iteration
space graph?

1 2 3 4 50

Write:

Read:

a[0]

a[0]

a[2]

a[1]

a[4]

a[2]

a[6]

a[3]

a[8]

a[4]

a[10]

a[5]

6

a[12]

a[6]

1 2 3 4 50

Write:

Read:

a[0]

a[0]

a[2]

a[1]

a[4]

a[2]

a[6]

a[3]

a[8]

a[4]

a[10]

a[5]

6

a[12]

a[6]

Wednesday, November 7, 12

Direction vectors
• The whole point of distance vectors is that we want to be able to

succinctly capture the dependences in a loop nest

• But in the previous example, not only did we add a lot of extra
information, we still had an infinite number of distance vectors

• Idea: summarize distance vectors, and save only the direction the
dependence was in

• (2, -1) → (+, –)

• (0, 1) → (0, +)

• (0, -2) → (0, –)

• (can’t happen; dependences have to be positive)

• Notation: sometimes use ‘<‘ and ‘>’ instead of ‘+’ and ‘–’

Wednesday, November 7, 12

Why use direction vectors?

• Direction vectors lose a lot of information, but do capture
some useful information

• Whether there is a dependence (anything other than a
‘0’ means there is a dependence)

• Which dimension and direction the dependence is in

• Many times, the only information we need to determine if
an optimization is legal is captured by direction vectors

• Loop parallelization

• Loop interchange

Wednesday, November 7, 12

Loop parallelization

Wednesday, November 7, 12

Loop-carried dependence

• The key concept for parallelization is the loop carried
dependence

• A dependence that crosses loop iterations

• If there is a loop carried dependence, then that loop cannot
be parallelized

• Some iterations of the loop depend on other iterations
of the same loop

Wednesday, November 7, 12

Examples

for (i = 0; i < N; i++)
a[2*i] = a[i];

for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 a[i+1][j-2] = a[i][j] + 1

Later iterations of i loop
depend on earlier iterations

Later iterations of both i and
j loops depend on earlier iterations

Wednesday, November 7, 12

Some subtleties

• Dependences might only
be carried over one loop!

• Can parallelize i loop, but
not j loop

0,4 1,4 2,4 3,4 4,4

0,3 1,3 2,3 3,3 4,3

0,2 1,2 2,2 3,2 4,2

0,1 1,1 2,1 3,1 4,1

0,0 1,0 2,0 3,0 4,0

for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 a[i][j+1] = a[i][j] + 1

Wednesday, November 7, 12

Some subtleties

• Dependences might only
be carried over one loop!

• Can parallelize j loop, but
not i loop

for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 a[i+1][j] = a[i-1][j] + 1

0,4 1,4 2,4 3,4 4,4

0,3 1,3 2,3 3,3 4,3

0,2 1,2 2,2 3,2 4,2

0,1 1,1 2,1 3,1 4,1

0,0 1,0 2,0 3,0 4,0

Wednesday, November 7, 12

Direction vectors

• So how do direction vectors help?

• If there is a non-zero entry for a loop dimension, that
means that there is a loop carried dependence over that
dimension

• If an entry is zero, then that loop can be parallelized!

Wednesday, November 7, 12

Improving parallelism
• Important point: any

dependence can prevent
parallelization

• Anti and output dependences
are important, not just flow
dependences

• But anti and output
dependences can be removed
by using more storage

• Like register renaming in
out-of-order processors

• In principle, all anti and output
dependences can be removed,
but this is difficult

• Key question: when are there
flow dependences?

for (i = 0; i < N; i++)
 a[i] = a[i + 1] + 1

for (i = 0; i < N; i++)
 aa[i] = a[i + 1] + 1

Wednesday, November 7, 12

Data Dependence Tests

Wednesday, November 7, 12

Problem formulation

• Given the loop nest:

• A dependence exists if there exist an integer i and an i’ such
that:

• f(i) = g(i’)

• 0 ≤ i, i’ < N

• If i < i’, write happens before read (flow dependence)

• If i > i’, write happens after read (anti dependence)

for (i = 0; i < N; i++)
 a[f(i)] = ...
 ... = a[g(i)]

Wednesday, November 7, 12

Loop normalization
• Loops that skip iterations can always be normalized to loops

that don’t, so we only need to consider loops that have unit
strides

• Note: this is essentially of the reverse of linear test
replacement

for (i = L; i < U; i += S)
... a[i] ...

for (i = 0; i < (U - L)/S; i += 1)
... a[S*i + L] ...

Wednesday, November 7, 12

Diophantine equations

• An equation whose coefficients and solutions are all
integers is called a Diophantine equation

• Our question:

f(i) = a*i + b!! g(i) = c*i + d

Does f(i) = g(i’) have a solution?

• f(i) = g(i’) ⇒ ai + b = ci’ + d ⇒ a1*i + a2*i’ = a3

Wednesday, November 7, 12

Solutions to Diophantine eqns

• An equation a1*i + a2*i’ = a3 has a solution iff gcd(a1, a2)
evenly divides a3

• Examples

• 15*i + 6*j - 9*k = 12 has a solution (gcd = 3)

• 2*i + 7*j = 3 has a solution (gcd = 1)

• 9*i + 6*j = 10 has no solution (gcd = 3)

Wednesday, November 7, 12

Why does this work?

• Suppose g is the gcd(a, b) in a*i + b*j = c

• Can rewrite equation as

g*(a’*i + b’*j) = c

a’ * i + b’ * j = c/g

• a’ and b’ are integers, and relatively prime (gcd = 1) so by
choosing i and j correctly, can produce any integer, but only
integers

• Equation has a solution provided c/g is an integer

Wednesday, November 7, 12

Finding the GCD

• Finding GCD with Euclid’s
algorithm

• Repeat

a = a mod b

swap a and b

until b is 0 (resulting a
is the gcd)

• Why? If g divides a and b,
then g divides a mod b

gcd(27, 12): a = 27, b = 15
a = 27 mod 15 = 12
a = 15 mod 12 = 3
a = 12 mod 3 = 0
gcd = 3

Wednesday, November 7, 12

Downsides to GCD test

• If f(i) = g(i’) fails the GCD test, then there is no i, i’ that can
produce a dependence → loop has no dependences

• If f(i) = g(i’), there might be a dependence, but might not

• i and i’ that satisfy equation might fall outside bounds

• Loop may be parallelizable, but cannot tell

• Unfortunately, most loops have gcd(a, b) = 1, which divides
everything

• Other optimizations (loop interchange) can tolerate
dependences in certain situations

Wednesday, November 7, 12

Other dependence tests

• GCD test: doesn’t account for loop bounds, does not
provide useful information in many cases

• Banerjee test (Utpal Banerjee): accurate test, takes
directions and loop bounds into account

• Omega test (William Pugh): even more accurate test,
precise but can be very slow

• Range test (Blume and Eigenmann): works for non-linear
subscripts

• Compilers tend to perform simple tests and only perform
more complex tests if they cannot prove non-existence of
dependence

Wednesday, November 7, 12

Other loop
optimizations

Wednesday, November 7, 12

Loop interchange

• We’ve seen this one before

• Interchange doubly-nested loop to

• Improve locality

• Improve parallelism

• Move parallel loop to outer loop (coarse grained
parallelism)

Wednesday, November 7, 12

Loop interchange legality

• We noted that loop interchange is not always legal, because
it reorders a computation

• Can we use dependences to determine legality?

Wednesday, November 7, 12

Loop interchange dependences
• Consider interchanging

the following loop, with
the dependence graph to
the right:

• Distance vector (1, 2)

• Direction vector (+, +)

for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 a[i+1][j+2] = a[i][j] + 1

0,4 1,4 2,4 3,4 4,4

0,3 1,3 2,3 3,3 4,3

0,2 1,2 2,2 3,2 4,2

0,1 1,1 2,1 3,1 4,1

0,0 1,0 2,0 3,0 4,0

i

j

Wednesday, November 7, 12

Loop interchange dependences
• Consider interchanging

the following loop, with
the dependence graph to
the right:

• Distance vector (2, 1)

• Direction vector (+, +)

• Distance vector gets
swapped!

for (j = 0; j < N; j++)
 for (i = 0; i < N; i++)
 a[i+1][j+2] = a[i][j] + 1

0,4 1,4 2,4 3,4 4,4

0,3 1,3 2,3 3,3 4,3

0,2 1,2 2,2 3,2 4,2

0,1 1,1 2,1 3,1 4,1

0,0 1,0 2,0 3,0 4,0

j

i

Wednesday, November 7, 12

Loop interchange legality

• Interchanging two loops swaps the order of their entries in
distance/direction vectors

• (0, +) → (+, 0)

• (+, 0) → (0, +)

• But remember, we can’t have backwards dependences

• (+, –) → (–, +)

• Illegal dependence → Loop interchange not legal!

Wednesday, November 7, 12

Loop interchange dependences
• Example of illegal

interchange:

for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 a[i+1][j-2] = a[i][j] + 1

0,4 1,4 2,4 3,4 4,4

0,3 1,3 2,3 3,3 4,3

0,2 1,2 2,2 3,2 4,2

0,1 1,1 2,1 3,1 4,1

0,0 1,0 2,0 3,0 4,0

i

j

Wednesday, November 7, 12

Loop interchange dependences
• Example of illegal

interchange:

• Flow dependences turned
into anti-dependences

• Result of computation
will change!

for (j = 0; j < N; j++)
 for (i = 0; i < N; i++)
 a[i+1][j-2] = a[i][j] + 1

0,4 1,4 2,4 3,4 4,4

0,3 1,3 2,3 3,3 4,3

0,2 1,2 2,2 3,2 4,2

0,1 1,1 2,1 3,1 4,1

0,0 1,0 2,0 3,0 4,0

j

i

Wednesday, November 7, 12

Loop fusion/distribution

• Loop fusion: combining two loops into a single loop

• Improves locality, parallelism

• Loop distribution: splitting a single loop into two loops

• Can increase parallelism (turn a non-parallelizable loop
into a parallelizable loop)

• Legal as long as optimization maintains dependences

• Every dependence in the original loop should have a
dependence in the optimized loop

• Optimized loop should not introduce new dependences

Wednesday, November 7, 12

Fusion/distribution example
• Code 1:

• Dependence graph

• All red iterations finish
before blue iterations →
flow dependence

for (i = 0; i < N; i++)
a[i - 1] = b[i]

for (j = 0; j < N; j++)
 c[j] = a[j]

0 1 2 3 4

0 1 2 3 4

• Code 2:

• Dependence graph

• i iterations finish before i+1
iterations → flow dependence
now an anti dependence!

for (i = 0; i < N; i++)
a[i - 1] = b[i]

 c[i] = a[i]

0 1 2 3 4

0 1 2 3 4

Wednesday, November 7, 12

Fusion/distribution utility

for (i = 0; i < N; i++)
a[i] = a[i - 1]

for (j = 0; j < N; j++)
 b[j] = a[j]

for (i = 0; i < N; i++)
a[i] = a[i - 1]

 b[i] = a[i]

Fusion

Distribution

• Fusion and distribution both legal

• Right code has better locality, but cannot be parallelized
due to loop carried dependences

• Left code has worse locality, but blue loop can be
parallelized

Wednesday, November 7, 12

