Control flow graphs and loop optimizations

Agenda

- Building control flow graphs
- Low level loop optimizations
- Code motion
- Strength reduction
- Unrolling
- High level loop optimizations
- Loop fusion
- Loop interchange
- Loop tiling

Moving beyond basic blocks

- Up until now, we have focused on single basic blocks
- What do we do if we want to consider larger units of computation
- Whole procedures?
- Whole program?
- Idea: capture control flow of a program
- How control transfers between basic blocks due to:
- Conditionals
- Loops

Representation

- Use standard three-address code
- Jump targets are labeled
- Also label beginning/end of functions
- Want to keep track of targets of jump statements
- Any statement whose execution may immediately follow execution of jump statement
- Explicit targets: targets mentioned in jump statement
- Implicit targets: statements that follow conditional jump statements
- The statement that gets executed if the branch is not taken

Running example

$$
\begin{aligned}
& A=4 \\
& t 1=A * B \\
& \text { repeat }\{ \\
& \text { t2 }=t 1 / C \\
& \text { if }(t 2 \geq W)\{ \\
& M=t 1 * k \\
& t 3=M+I \\
& \} \\
& H=I \\
& M=t 3-H \\
& \} \text { until }(T 3 \geq 0)
\end{aligned}
$$

Running example

1		$A=4$
2		$t 1=A * B$
3	$L 1:$	$t 2=t 1 / C$
4		if t2 $<W$ goto $L 2$
5		$M=t 1 * k$
6		$t 3=M+I$
7	$L 2:$	$H=I$
8		$M=t 3-H$
9		if t3 ≥ 0 goto L3
10		goto L1
11	$L 3:$	halt

Control flow graphs

- Divides statements into basic blocks
- Basic block: a maximal sequence of statements $\mathrm{I}_{0}, \mathrm{I}_{1}, \mathrm{I}_{2}, \ldots, \mathrm{I}_{n}$ such that if I_{j} and l_{j+1} are two adjacent statements in this sequence, then
- The execution of I_{j} is always immediately followed by the execution of I_{j+1}
- The execution of $\mathrm{l}_{\mathrm{j}+\mathrm{l}}$ is always immediate preceded by the execution of I_{j}
- Edges between basic blocks represent potential flow of control

CFG for running example

Constructing a CFG

- To construct a CFG where each node is a basic block
- Identify leaders: first statement of a basic block
- In program order, construct a block by appending subsequent statements up to, but not including, the next leader
- Identifying leaders
- First statement in the program
- Explicit target of any conditional or unconditional branch
- Implicit target of any branch

Partitioning algorithm

- Input: set of statements, stat $(i)=i^{\text {th }}$ statement in input
- Output: set of leaders, set of basic blocks where block(x) is the set of statements in the block with leader x
- Algorithm

```
leaders = {I} //Leaders always includes first statement
for i = I to |n| //|n| = number of statements
    if stat(i) is a branch, then
        leaders = leaders }\cup\mathrm{ all potential targets
    end for
    worklist = leaders
    while worklist not empty do
        x = remove earliest statement in worklist
    block(x)={x}
    for (i=x + I; i \leq |n| and i\not\in leaders; i++)
        block(x) = block(x) \cup{i}
    end for
end while
```


Running example

1		$A=4$
2		$t 1=A * B$
3	$L 1:$	$t 2=t 1 / C$
4		if $\mathrm{t} 2<\mathrm{W}$ goto L 2
5		$M=\mathrm{t} 1 * \mathrm{~K}$
6		$t 3=M+\mathrm{I}$
7	$L 2:$	$H=I$
8		$M=\mathrm{t} 3-\mathrm{H}$
9		if t3 ≥ 0 goto L3
10		goto L1
11	$L 3:$	halt

Leaders = Basic blocks =

Running example

		$\begin{aligned} & A=4 \\ & t 1=A * B \end{aligned}$
3	L1:	t2 = t1 / C
4		if t2 < W goto L2
5		$\mathrm{M}=\mathrm{t} 1{ }^{*} \mathrm{k}$
6		t3 $=\mathrm{M}+\mathrm{I}$
7	L2:	$\mathrm{H}=\mathrm{I}$
8		$\mathrm{M}=\mathrm{t} 3-\mathrm{H}$
9		if t3 ≥ 0 goto L3
10		goto L1
11		halt

Leaders $=\{1,3,5,7,10,11\}$
Basic blocks $=\{\{1,2\},\{3,4\},\{5,6\},\{7,8,9\},\{10\},\{11\}\}$

Putting edges in CFG

- There is a directed edge from B_{1} to B_{2} if
- There is a branch from the last statement of B_{I} to the first statement (leader) of B_{2}
- B_{2} immediately follows B_{1} in program order and B_{1} does not end with an unconditional branch
- Input: block, a sequence of basic blocks
- Output:The CFG

$$
\text { for } \mathrm{i}=\mathrm{I} \text { to |block| }
$$

$x=$ last statement of block(i)
if $\operatorname{stat}(x)$ is a branch, then
for each explicit target y of $\operatorname{stat}(x)$ create edge from block i to block y
end for
if $\operatorname{stat}(x)$ is not unconditional then
create edge from block i to block $i+1$
end for

Result

Discussion

- Some times we will also consider the statement-level CFG, where each node is a statement rather than a basic block
- Either kind of graph is referred to as a CFG
- In statement-level CFG, we often use a node to explicitly represent merging of control
- Control merges when two different CFG nodes point to the same node
- Note: if input language is structured, front-end can generate basic block directly
- "GOTO considered harmful"

Statement level CFG

Loop optimization

- Low level optimization
- Moving code around in a single loop
- Examples: loop invariant code motion, strength reduction, loop unrolling
- High level optimization
- Restructuring loops, often affects multiple loops
- Examples: loop fusion, loop interchange, loop tiling

Low level loop optimizations

- Affect a single loop
- Usually performed at three-address code stage or later in compiler
- First problem: identifying loops
- Low level representation doesn't have loop statements!

Identifying loops

- First, we must identify dominators
- Node a dominates node b if every possible execution path that gets to b must pass through a
- Many different algorithms to calculate dominators - we will not cover how this is calculated
- A back edge is an edge from b to a when a dominates b
- The target of a back edge is a loop header

Natural loops

- Will focus on natural loops loops that arise in structured programs
- For a node n to be in a loop with header h
- n must be dominated by h
- There must be a path in the CFG from n to h through a back-edge to h
- What are the back edges in the example to the right? The loop headers? The natural loops?

Loop invariant code motion

- Idea: some expressions evaluated in a loop never change; they are loop invariant
- Can move loop invariant expressions outside the loop, store result in temporary and just use the temporary in each iteration
- Why is this useful?

Identifying loop invariant code

- To determine if a statement
$\mathrm{s}: \mathrm{a}=\mathrm{b}$ op c
is loop invariant, find all definitions of b and c that reach s
- A statement t defining b reaches s if there is a path from t to s where b is not re-defined
- s is loop invariant if both b and c satisfy one of the following
- it is constant
- all definitions that reach it are from outside the loop
- only one definition reaches it and that definition is also loop invariant

Moving loop invariant code

- Just because code is loop invariant doesn't mean we can move it!

```
for (...)
    \(a=b+c\)
```

for (...)
if (*)
$a=5$
$c=a ;$

```
                                    a = 5;
                                    for (...)
    if (*)
        a = 4 + c
    b = a
```

- We can move a loop invariant statement $\mathrm{a}=\mathrm{b}$ op c if
- The statement dominates all loop exits where a is live
- There is only one definition of a in the loop
- a is not live before the loop
- Move instruction to a preheader, a new block put right before loop header

Strength reduction

- Like strength reduction peephole optimization
- Peephole: replace

$$
\begin{aligned}
& \text { for }(i=0 ; i<100 ; i++) \\
& A[i]=0 ;
\end{aligned}
$$

expensive instruction like a * 2 with $\mathrm{a} \ll 1$

- Replace expensive instruction, multiply, with a cheap one, addition
- Applies to uses of an induction variable
- Opportunity: array indexing

Strength reduction

- Like strength reduction peephole optimization
- Peephole: replace

$$
\begin{aligned}
& \text { for }(i=0 ; i<100 ; i++) \\
& A[i]=0 ;
\end{aligned}
$$

expensive instruction like a*2 with a << 1

- Replace expensive instruction, multiply, with a cheap one, addition
- Applies to uses of an induction variable
- Opportunity: array indexing

Induction variables

- A basic induction variable is a variable j
- whose only definition within the loop is an assignment of the form $\mathrm{j}=\mathrm{j} \pm \mathrm{c}$, where c is loop invariant
- Intuition: the variable which determines number of iterations is usually an induction variable
- A mutual induction variable i may be
- defined once within the loop, and its value is a linear function of some other induction variable j such that
$\mathrm{i}=\mathrm{cl} * \mathrm{j} \pm \mathrm{c} 2$ or $\mathrm{i}=\mathrm{j} / \mathrm{cl} \pm \mathrm{c} 2$
where cl, c2 are loop invariant
- A family of induction variables include a basic induction variable and any related mutual induction variables

Strength reduction algorithm

- Let i be an induction variable in the family of the basic induction variable j, such that $i=c l * j+c 2$
- Create a new variable i'
- Initialize in preheader

$$
i^{\prime}=c l * j+c 2
$$

- Track value of j . After $\mathrm{j}=\mathrm{j}+\mathrm{c} 3$, perform

$$
i^{\prime}=i \prime+(c l * c 3)
$$

- Replace definition of i with

$$
i=i
$$

- Key: cl, c2, c3 are all loop invariant (or constant), so computations like (cl * c3) can be moved outside loop

Linear test replacement

- After strength reduction, the loop test may be the only use of the basic induction variable
- Can now eliminate induction variable altogether
- Algorithm
- If only use of an induction variable is the loop test and its increment, and if the test is always computed
- Can replace the test with an equivalent one using one of the mutual induction variables

$$
\begin{aligned}
& i=2 \\
& \text { for }(; i<k ; i++) \\
& \quad j=50^{*} \mathrm{i} \\
& \ldots=j
\end{aligned}
$$

Strength reduction

$$
\begin{aligned}
& i=2 ; j^{\prime}=50 * i \\
& \text { for }(; i<k ; i++, j \prime+=50) \\
& \quad \ldots=j \text { j }
\end{aligned}
$$

$$
\begin{aligned}
& i=2 ; j^{\prime}=50 * i \\
& \text { for }\left(; j^{\prime}<50 * k ; j^{\prime}+=50\right) \\
& \quad \ldots=j,
\end{aligned}
$$

Loop unrolling

- Modifying induction variable in each iteration can be expensive
- Can instead unroll loops and perform multiple iterations for each increment of the induction variable
- What are the advantages and disadvantages?

High level loop optimizations

- Many useful compiler optimizations require restructuring loops or sets of loops
- Combining two loops together (loop fusion)
- Switching the order of a nested loop (loop interchange)
- Completely changing the traversal order of a loop (loop tiling)
- These sorts of high level loop optimizations usually take place at the AST level (where loop structure is obvious)

Cache behavior

- Most loop transformations target cache performance
- Attempt to increase spatial or temporal locality
- Locality can be exploited when there is reuse of data (for temporal locality) or recent access of nearby data (for spatial locality)

- Loops are a good opportunity for this: many loops iterate through matrices or arrays
- Consider matrix-vector multiply example
- Multiple traversals of vector: opportunity for spatial and temporal locality

$$
\begin{aligned}
& \text { for }(i=0 ; i<N ; i++) \\
& \text { for }(j=0 ; j<N ; j++) \\
& \qquad y[i]+=A[i][j] * x[j]
\end{aligned}
$$

- Regular access to array: opportunity for spatial locality

Loop fusion

- Combine two loops together into a single loop

$$
\begin{aligned}
& \text { do } \mathrm{I}=1, \mathrm{n} \\
& \mathrm{c}[\mathrm{i}=\mathrm{a}[\mathrm{i}] \\
& \mathrm{b}[\mathrm{i}]=\mathrm{a}[\mathrm{i}] \\
& \text { end do }
\end{aligned}
$$

- Is this always legal?

Loop interchange

- Change the order of a nested loop
- This is not always legal - it changes the order that elements are accessed!
- Why is this useful?
- Consider matrix-matrix multiply when A is stored in column-major order (i.e., each column is stored

$$
\begin{aligned}
& \text { for }(i=0 ; i<N ; i++) \\
& \quad \text { for }(j=0 ; j<N ; j++) \\
& \quad y[i]+=A[i][j] * x[j]
\end{aligned}
$$ in contiguous memory)

Loop interchange

- Change the order of a nested loop
- This is not always legal - it changes the order that elements are accessed!
- Why is this useful?
- Consider matrix-matrix multiply when A is stored in column-major order (i.e., each column is stored

$$
\begin{aligned}
& \text { for }(j=0 ; j<N ; j++) \\
& \quad \text { for }(i=0 ; i<N ; i++) \\
& \quad y[i]+=A[i][j] * x[j]
\end{aligned}
$$ in contiguous memory)

Loop tiling

- Also called "loop blocking"
- One of the more complex loop transformations
- Goal: break loop up into for ($\mathrm{ii}=0$; $\mathrm{ii}<\mathrm{N} ; \mathrm{ii}+=\mathrm{B}$) smaller pieces to get spatial and temporal locality
- Create new inner loops so that data accessed in inner loops fit in cache

$$
\begin{aligned}
& \text { for }(\mathrm{i}=0 ; \mathrm{i}<\mathrm{N} ; \mathrm{i}++ \text {) } \\
& \quad \text { for }(j=0 ; j<N ; j++) \\
& y[i]+=A[i][j] * \times[j]
\end{aligned}
$$

```
for (jj = 0; jj < N; jj += B)
    for (i = ii; i < ii+B; i++)
    for (j = jj; j < jj+B; j++)
        y[i] += A[i][j] * x[j]
for (ii = 0; ii < N; ii += B)
                    \square\mp@code{x}
```

- Also changes iteration order, so may not be legal

Loop tiling

- Also called "loop blocking"
- One of the more complex loop transformations
- Goal: break loop up into smaller pieces to get spatial and temporal locality
- Create new inner loops so that data accessed in inner loops fit in cache
- Also changes iteration order, so may not be legal

```
```

for (ii = 0; ii < N; ii += B)

```
```

for (ii = 0; ii < N; ii += B)

$$
\text { for (} j j=0 ; j j<N ; j j+=B)
$$

 for (jj = 0; jj < N; jj += B)
 for (jj = 0; jj < N; jj += B)
 $$
\text { for (} i=i i ; i<i i+B ; i++ \text {) }
$$

 for (i = ii; i < ii+B; i++)
 for (i = ii; i < ii+B; i++)
 $$
\text { for }(j=j j ; j<j j+B ; j++)
$$

 for (j = jj; j < jj+B; j++)
 for (j = jj; j < jj+B; j++)
 $$
y[i]+=A[i][j] \text { * x[j] }
$$

 y[i] += A[i][j] * x[j]
    ```
```

 y[i] += A[i][j] * x[j]
    ```
```

```
\(\stackrel{\mathrm{j}}{\square} \mathrm{m}\)
```

```
\(\stackrel{\mathrm{j}}{\square} \mathrm{m}\)
```

$$
\begin{aligned}
& \text { for }(i=0 ; i<N ; i++) \\
& \text { for }(j=0 ; j<N ; j++) \\
& y[i]+=A[i][j] * \times[j]
\end{aligned}
$$

In a real (Itanium) compiler

Loop transformations

- Loop transformations can have dramatic effects on performance
- Doing this legally and automatically is very difficult!
- Researchers have developed techniques to determine legality of loop transformations and automatically transform the loop
- Techniques like unimodular transform framework and polyhedral framework
- These approaches will get covered in more detail in advanced compilers course

