Control flow graphs and
loop optimizations

Agenda

® Building control flow graphs
® |ow level loop optimizations
® (Code motion
® Strength reduction
® Unrolling
® High level loop optimizations
® |oop fusion
® Loop interchange

® |oop tiling

Friday, October 26, 12

Moving beyond basic blocks

® Ubp until now, we have focused on single basic blocks

® What do we do if we want to consider larger units of
computation

® Whole procedures!?
® Whole program!?
® |dea: capture control flow of a program
® How control transfers between basic blocks due to:
® Conditionals

® |oops

Friday, October 26, 12

Representation

® Use standard three-address code

® Jump targets are labeled

® Also label beginning/end of functions

® Want to keep track of targets of jump statements

® Any statement whose execution may immediately follow
execution of jump statement

® [xplicit targets: targets mentioned in jump statement

® Implicit targets: statements that follow conditional jump
statements

® The statement that gets executed if the branch is not
taken

Friday, October 26, 12

Running example

M=1t3 - H
} until (T3 = 0)

Friday, October 26, 12

Running example

o

PO Ooo~NOUT A~ WN B

M=1t3 - H

1f t3 > 0 goto L3
goto L1

halt

Friday, October 26, 12

Control flow graphs

® Divides statements into basic blocks

® Basic block: a maximal sequence of statements I, |1, |2, ..., In
such that if |; and lj+| are two adjacent statements in this

sequence, then

® The execution of |j is always immediately followed by the
execution of ||

® The execution of lj+| is always immediate preceded by
the execution of |;

® Edges between basic blocks represent potential flow of
control

Friday, October 26, 12

CFG for running example

L1: t2 = t1/c
1f t2 < W goto L2

goto L1

l72: H=1
M=+%t3 -H

1f t3 > @ goto L3
How do we build
this automatically?
L3: halt

Friday, October 26, 12

Constructing a CFG

® To construct a CFG where each node is a basic block
® |dentify leaders: first statement of a basic block

® |n program order, construct a block by appending
subsequent statements up to, but not including, the next
leader

® |dentifying leaders
® First statement in the program
® Explicit target of any conditional or unconditional branch

® |mplicit target of any branch

Friday, October 26, 12

Partitioning algorithm

® |nput: set of statements, stat(i) = i™" statement in input

® Output: set of leaders, set of basic blocks where block(x) is
the set of statements in the block with leader x

® Algorithm
leaders = {1} //Leaders always includes first statement
fori=1 to |n| //|n|] = number of statements

if stat(i) is a branch, then
leaders = leaders v all potential targets
end for
worklist = leaders
while worklist not empty do
X = remove earliest statement in worklist
block(x) = {x}
for (i=x+ I;i < |n|and i & leaders;i++)
block(x) = block(x) u {i}
end for
end while

Friday, October 26, 12

Running example

M=1t3 - H

1f t3 > 0 goto L3
goto L1

halt

PO Ooo~NOUT A~ WN B
(+
W
=
-

o

Leaders =
Basic blocks =

Friday, October 26, 12

Running example

M=1t3 - H

1f t3 > 0 goto L3
goto L1

halt

RSO o0 N UL WIN -
(+
W
=
-

==

Leaders = {1,3,5,7,10, | I}
Basic blocks = {{l,2},{3,4},{5,6},{7,8,9},{10},{11} }

Friday, October 26, 12

Putting edges in CFG

® There is a directed edge from B, to B, if

® There is a branch from the last statement of B, to the first
statement (leader) of B

® B, immediately follows B, in program order and B, does not end
with an unconditional branch

® |nput: block, a sequence of basic blocks

® Output:The CFG

for i = | to |block|
x = last statement of block(i)
if stat(x) is a branch, then
for each explicit target y of stat(x)
create edge from block i to block y
end for
if stat(x) is not unconditional then

create edge from block i to block i+
end for

Friday, October 26, 12

A =4
tl = A *B
t2 = tl/c

1f t2 < W goto L2

goto L1

M=+t3 -H

1f t3 2 @ goto L3

halt

Friday, October 26, 12

Discussion

® Some times we will also consider the statement-level CFG,
where each node is a statement rather than a basic block

® FEither kind of graph is referred to as a CFG

® |n statement-level CFG, we often use a node to explicitly
represent merging of control

® Control merges when two different CFG nodes point to
the same node

® Note:if input language is structured, front-end can generate
basic block directly

® “GOTO considered harmful”

Friday, October 26, 12

Statement level CFG

A =4
¥
tl = A *B
v
Q
t2 = tl/c
Y

1f t2 < W goto L2

M=tl * k
v goto L1
t3=M+1
y
~Q
L2: H=1
v
M=+t3 -H
v
1f t3 > 0 goto L3
y
halt

Friday, October 26, 12

Loop optimization

® Low level optimization
® Moving code around in a single loop

® Examples: loop invariant code motion, strength
reduction, loop unrolling

® High level optimization
® Restructuring loops, often affects multiple loops

® Examples: loop fusion, loop interchange, loop tiling

Friday, October 26, 12

Low level loop optimizations

® Affect a single loop

® Usually performed at three-address code stage or later in
compiler

® First problem: identifying loops

® | ow level representation doesn’t have loop statements!

Friday, October 26, 12

|dentifying loops

® First, we must identify dominators

® Node a dominates node b if every possible execution
path that gets to b must pass through a

® Many different algorithms to calculate dominators — we
will not cover how this is calculated

® A back edge is an edge from b to a when a dominates b

® The target of a back edge is a loop header

Friday, October 26, 12

Natural loops

® Will focus on natural loops —

loops that arise in structured
programs

® For anoden tobeinaloop
with header h

® n must be dominated by h

® There must be a path in the
CFG from n to h through a
back-edge to h

:
l
l

s
¥

Friday, October 26, 12

Loop invariant code motion

® |dea:some expressions evaluated in a loop never change;
they are loop invariant

® Can move loop invariant expressions outside the loop,
store result in temporary and just use the temporary in
each iteration

® Why is this useful?

Friday, October 26, 12

|dentifying loop invariant code

® To determine if a statement
:a=bopc
is loop invariant, find all definitions of b and ¢ that reach

® A statement t defining b reaches s if there is a path from
to s where b is not re-defined

® s is loop invariant if both b and c satisfy one of the following
® |t is constant
® all definitions that reach it are from outside the loop

® only one definition reaches it and that definition is also
loop invariant

Friday, October 26, 12

Moving loop invariant code

® Just because code is loop invariant doesn’t mean we can move it!

for (...)
fOr (...) if (*)
for (...) if (%) a=>5
a=Db + c a=> else
¢ = a; a=6

® We can move a loop invariant statement a = b op c if
® The statement dominates all loop exits where a is live

® There is only one definition of a in the loop

® Move instruction to a preheader,a new block put right before
loop header

Friday, October 26, 12

Strength reduction

® Like strength reduction
peephole optimization

® Peephole: replace

expensive instruction like

a * 2 with a << |

® Replace expensive

instruction, multiply, with a

cheap one, addition

® Applies to uses of an

induction variable

® Opportunity: array
indexing

for (1 =0; 1 < 100; 1++)
A[1] = 0;

1 = 0;

L2:1f (1 >= 100) goto L1
Jj=4* 1+ &A

*] = 0;
1 =1+ 1;
goto L2

L1:

Friday, October 26, 12

Strength reduction

® Like strength reduction

peephole optimization

® Peephole: replace

expensive instruction like

a * 2 with a << |

® Replace expensive

instruction, multiply, with a

cheap one, addition

® Applies to uses of an

induction variable

® Opportunity: array
indexing

for (1 =0; 1 < 100; 1++)
A[1] = 0;

|

1 =0; k = &A;
L2:1f (1 >= 100) goto L1
J = k;

*] = 0;
1=1+1; k =k + 4;
goto L2

L1:

Friday, October 26, 12

Induction variables

® A basic induction variable is a variable |

® whose only definition within the loop is an assighment of the
form j =j £ ¢, where c is loop invariant

® |ntuition: the variable which determines number of iterations is
usually an induction variable

® A mutual induction variable i may be

® defined once within the loop, and its value is a linear function of
some other induction variable j such that

i=cl*jxc2ori=jlcl £c2
where cl, c2 are loop invariant

® A family of induction variables include a basic induction variable and
any related mutual induction variables

Friday, October 26, 12

Strength reduction algorithm

® Letibe an induction variable in the family of the basic induction
variable j, such thati = cl *j + c2

® Create a new variable i’

® |nitialize in preheader
" =cl *j+c2

® Track value of j.After j = j + c3, perform
i’ =i+ (cl *c3)

® Replace definition of i with
=i

® Key:cl,c2,c3 are all loop invariant (or constant), so computations
like (cl * c3) can be moved outside loop

Friday, October 26, 12

Linear test replacement

® After strength reduction, the
loop test may be the only use of
the basic induction variable

® Can now eliminate induction
variable altogether

® Algorithm

® |f only use of an induction
variable is the loop test and
its increment, and if the test
is always computed

® (Can replace the test with an
equivalent one using one of
the mutual induction
variables

1 =2
for (; 1 < k; 1++)
Jj = 50*1
. =]

l Strength reduction

1=2; J°> =50 * 1
for (; 1 < k; i++, J’ += 50)
=7’

l Linear test replacement

1=2; J°> =50 * 1
for (; 3’ < 50*k; 3’ += 50)

1)

- =]

Friday, October 26, 12

Loop unrolling

Modifying induction
variable in each iteration
can be expensive

Can instead unroll loops
and perform multiple
iterations for each
increment of the
induction variable

What are the advantages
and disadvantages!

for (1 =

0; 1 < N; 1++)

Ali1] = ...

for (1 =

l Unroll by factor of 4

0; i < N; i 4= 4)

Al1] = ...

A[i+1]
A[i+2]
A[1+3]

Friday, October 26, 12

High level loop optimizations

® Many useful compiler optimizations require restructuring
loops or sets of loops

® Combining two loops together (loop fusion)
® Switching the order of a nested loop (loop interchange)

® Completely changing the traversal order of a loop (loop
tiling)

® These sorts of high level loop optimizations usually take
place at the AST level (where loop structure is obvious)

Friday, October 26, 12

Cache behavior

® Most loop transformations target cache
performance

Attempt to increase spatial or temporal
locality

Locality can be exploited when there is
reuse of data (for temporal locality) or
recent access of nearby data (for spatial
locality)

® |oops are a good opportunity for this: many
loops iterate through matrices or arrays

® Consider matrix-vector multiply example

Multiple traversals of vector:
opportunity for spatial and temporal
locality

Regular access to array: opportunity for
spatial locality

HEENEE

y A
y = Ax
for (1 =0; 1 < N; 1++)
for (j = 0; J < N; Jj++)

ylil += A[1][J] * x[3]

Friday, October 26, 12

dol=1,n
cli] = a[i]
end do
dol=1,n
bli] = a[i]
end do

L1

c[1:n]

a[1:n]

b[1:n]

a[1:n]

Loop fusion

® Combine two loops
together into a single
loop

® Why is this useful?

® |s this always legal?

dol=1,n
cli] = a[i]
b[i] = a[i]
end do

L1

c[1:n]

a[1:n]

b[1:n]

Friday, October 26, 12

Loop interchange

Change the order of a nested
loop

This is not always legal — it
changes the order that
elements are accessed!

Why is this useful?

® Consider matrix-matrix
multiply when A is stored
in column-major order
(i.e., each column is stored
in contiguous memory)

A
for (1 =0; 1 < N; 1++)
for (j =0; j < N; j++)
y[i] += A[1]1[3] * x[]]

< L[]

Friday, October 26, 12

Loop interchange

® Change the order of a nested
loop

]

® This is not always legal — it LLELLLTX
changes the order that
elements are accessed! i

® Why is this useful? -

y A
° Con§|der matrix-matrix fFor (3 = 0; < N3 3++)
multiply when A is stored For (i = 0: i < N: i++4)

in column-major order : N :
1] += A[1 * X
(i.e., each column is stored yLil L1103 3]

in contiguous memory)

Friday, October 26, 12

Loop tiling

5 o, for (1 =0; 1 < N; 1++)
® Also called “loop blocking for (3 = @; § < N3 j++)

y[il += A[iI[3] * x[3J]

® One of the more complex
loop transformations

® Goal:break loop upinto for (i1 = 0; 11 < Nj 11 += B)

smaller pieces to get spatial ~ for (33 =05 33 < N; JJ += B)

and temporal locality FO;OEIC; :J’JI ; lI;;B'iB}TL)

e Create new inner loops y[il += A[i1031 * x[3]
so that data accessed in |
inner loops fit in cache | | X
® Also changes iteration —
order, so may not be legal f u
y A

Friday, October 26, 12

Loop tiling

for (1 =0; 1 < N; 1++)
for (J =0; J < N; J++)
y[i] += A[11[3] * x[J]

Also called “loop blocking”

One of the more complex
loop transformations

Goal: break loop up into for (i1 = @; 11 < Nj 11 += B)

smaller pieces to get spatial 10" (JJ =05 JJ < N5 33 +=B)

and temporal locality fO:‘:oEl(;‘ :331 ; llﬁiB#ﬁﬂ

® Create new inner loops y[il += A[il[3] * x[3]
so that data accessed in j
inner loops fit in cache (TEA 1 X

Also changes iteration
order, so may not be legal i

||

vel

< L[]
>

Friday, October 26, 12

In a real (Itanium) compiler

GFLOPS relative to -0O2; bigger is better

300 92% of Peak
Performance

§ 225 -

[

[§+]

£

8 150

(/)]

8

o

Y

8 75

0 — — — : —_—
o ov & & & & o
o N4 0\\'\ 7 &
\\ O S
2 & & & 9
8 N WS
< x L
g &

Friday, October 26, 12

Loop transformations

® | oop transformations can have dramatic effects on performance
® Doing this legally and automatically is very difficult!

® Researchers have developed techniques to determine legality of loop
transformations and automatically transform the loop

® Techniques like unimodular transform framework and polyhedral
framework

® These approaches will get covered in more detail in advanced
compilers course

Friday, October 26, 12

