
Control flow graphs and
loop optimizations

Friday, October 26, 12

Agenda
• Building control flow graphs

• Low level loop optimizations

• Code motion

• Strength reduction

• Unrolling

• High level loop optimizations

• Loop fusion

• Loop interchange

• Loop tiling

Friday, October 26, 12

Moving beyond basic blocks

• Up until now, we have focused on single basic blocks

• What do we do if we want to consider larger units of
computation

• Whole procedures?

• Whole program?

• Idea: capture control flow of a program

• How control transfers between basic blocks due to:

• Conditionals

• Loops

Friday, October 26, 12

Representation
• Use standard three-address code

• Jump targets are labeled

• Also label beginning/end of functions

• Want to keep track of targets of jump statements

• Any statement whose execution may immediately follow
execution of jump statement

• Explicit targets: targets mentioned in jump statement

• Implicit targets: statements that follow conditional jump
statements

• The statement that gets executed if the branch is not
taken

Friday, October 26, 12

Running example

A = 4
t1 = A * B
repeat {
t2 = t1/C
if (t2 ≥ W) {
M = t1 * k
t3 = M + I

}
H = I
M = t3 - H

} until (T3 ≥ 0)

Friday, October 26, 12

Running example

 1		 	 A = 4
 2		 	 t1 = A * B
 3	 L1:	 t2 = t1 / C
 4		 	 if t2 < W goto L2
 5		 	 M = t1 * k
 6		 	 t3 = M + I
 7	 L2:	 H = I
 8		 	 M = t3 - H
 9		 	 if t3 ≥ 0 goto L3
10		 	 goto L1
11	 L3:	 halt

Friday, October 26, 12

Control flow graphs

• Divides statements into basic blocks

• Basic block: a maximal sequence of statements I0, I1, I2, ..., In
such that if Ij and Ij+1 are two adjacent statements in this
sequence, then

• The execution of Ij is always immediately followed by the
execution of Ij+1

• The execution of Ij+1 is always immediate preceded by
the execution of Ij

• Edges between basic blocks represent potential flow of
control

Friday, October 26, 12

CFG for running example
A = 4

t1 = A * B

L1: t2 = t1/c

if t2 < W goto L2

M = t1 * k

t3 = M + I

L2: H = I

M = t3 - H

if t3 ≥ 0 goto L3

goto L1

L3: halt

How do we build
this automatically?

Friday, October 26, 12

Constructing a CFG

• To construct a CFG where each node is a basic block

• Identify leaders: first statement of a basic block

• In program order, construct a block by appending
subsequent statements up to, but not including, the next
leader

• Identifying leaders

• First statement in the program

• Explicit target of any conditional or unconditional branch

• Implicit target of any branch

Friday, October 26, 12

Partitioning algorithm
• Input: set of statements, stat(i) = ith statement in input

• Output: set of leaders, set of basic blocks where block(x) is
the set of statements in the block with leader x

• Algorithm
leaders = {1}	
 	
 //Leaders always includes first statement
for i = 1 to |n|	
 //|n| = number of statements

if stat(i) is a branch, then
leaders = leaders ∪ all potential targets

end for
worklist = leaders
while worklist not empty do

x = remove earliest statement in worklist
block(x) = {x}
for (i = x + 1; i ≤ |n| and i ∉ leaders; i++)

block(x) = block(x) ∪ {i}
end for

end while

Friday, October 26, 12

Running example

 1		 	 A = 4
 2		 	 t1 = A * B
 3	 L1:	 t2 = t1 / C
 4		 	 if t2 < W goto L2
 5		 	 M = t1 * k
 6		 	 t3 = M + I
 7	 L2:	 H = I
 8		 	 M = t3 - H
 9		 	 if t3 ≥ 0 goto L3
10		 	 goto L1
11	 L3:	 halt

Leaders =
Basic blocks =

Friday, October 26, 12

Running example

 1		 	 A = 4
 2		 	 t1 = A * B
 3	 L1:	 t2 = t1 / C
 4		 	 if t2 < W goto L2
 5		 	 M = t1 * k
 6		 	 t3 = M + I
 7	 L2:	 H = I
 8		 	 M = t3 - H
 9		 	 if t3 ≥ 0 goto L3
10		 	 goto L1
11	 L3:	 halt

Leaders =	
 	
 	
 {1, 3, 5, 7, 10, 11}
Basic blocks = 	
 { {1, 2}, {3, 4}, {5, 6}, {7, 8, 9}, {10}, {11} }

Friday, October 26, 12

Putting edges in CFG
• There is a directed edge from B1 to B2 if

• There is a branch from the last statement of B1 to the first
statement (leader) of B2

• B2 immediately follows B1 in program order and B1 does not end
with an unconditional branch

• Input: block, a sequence of basic blocks

• Output: The CFG

for i = 1 to |block|
x = last statement of block(i)
if stat(x) is a branch, then

for each explicit target y of stat(x)
create edge from block i to block y

end for
if stat(x) is not unconditional then

create edge from block i to block i+1
end for

Friday, October 26, 12

Result
A = 4

t1 = A * B

L1: t2 = t1/c

if t2 < W goto L2

M = t1 * k

t3 = M + I

L2: H = I

M = t3 - H

if t3 ≥ 0 goto L3

goto L1

L3: halt

Friday, October 26, 12

Discussion

• Some times we will also consider the statement-level CFG,
where each node is a statement rather than a basic block

• Either kind of graph is referred to as a CFG

• In statement-level CFG, we often use a node to explicitly
represent merging of control

• Control merges when two different CFG nodes point to
the same node

• Note: if input language is structured, front-end can generate
basic block directly

• “GOTO considered harmful”

Friday, October 26, 12

Statement level CFG
A = 4

t1 = A * B

L1: t2 = t1/c

if t2 < W goto L2

M = t1 * k

t3 = M + I

L2: H = I

M = t3 - H

if t3 ≥ 0 goto L3

L3: halt

goto L1

Friday, October 26, 12

Loop optimization

• Low level optimization

• Moving code around in a single loop

• Examples: loop invariant code motion, strength
reduction, loop unrolling

• High level optimization

• Restructuring loops, often affects multiple loops

• Examples: loop fusion, loop interchange, loop tiling

Friday, October 26, 12

Low level loop optimizations

• Affect a single loop

• Usually performed at three-address code stage or later in
compiler

• First problem: identifying loops

• Low level representation doesn’t have loop statements!

Friday, October 26, 12

Identifying loops

• First, we must identify dominators

• Node a dominates node b if every possible execution
path that gets to b must pass through a

• Many different algorithms to calculate dominators – we
will not cover how this is calculated

• A back edge is an edge from b to a when a dominates b

• The target of a back edge is a loop header

Friday, October 26, 12

Natural loops
• Will focus on natural loops –

loops that arise in structured
programs

• For a node n to be in a loop
with header h

• n must be dominated by h

• There must be a path in the
CFG from n to h through a
back-edge to h

• What are the back edges in the
example to the right? The loop
headers? The natural loops?

B1

B2

B3

B4

Friday, October 26, 12

Loop invariant code motion

• Idea: some expressions evaluated in a loop never change;
they are loop invariant

• Can move loop invariant expressions outside the loop,
store result in temporary and just use the temporary in
each iteration

• Why is this useful?

Friday, October 26, 12

Identifying loop invariant code

• To determine if a statement

s: a = b op c

is loop invariant, find all definitions of b and c that reach s

• A statement t defining b reaches s if there is a path from
t to s where b is not re-defined

• s is loop invariant if both b and c satisfy one of the following

• it is constant

• all definitions that reach it are from outside the loop

• only one definition reaches it and that definition is also
loop invariant

Friday, October 26, 12

Moving loop invariant code

• Just because code is loop invariant doesn’t mean we can move it!

• We can move a loop invariant statement a = b op c if

• The statement dominates all loop exits where a is live

• There is only one definition of a in the loop

• a is not live before the loop

• Move instruction to a preheader, a new block put right before
loop header

a = 5;
for (...)

if (*)
a = 4 + c

b = a

for (...)
if (*)

a = 5
else

a = 6

for (...)
if (*)

a = 5
c = a;

for (...)
a = b + c

Friday, October 26, 12

Strength reduction
• Like strength reduction

peephole optimization

• Peephole: replace
expensive instruction like
a * 2 with a << 1

• Replace expensive
instruction, multiply, with a
cheap one, addition

• Applies to uses of an
induction variable

• Opportunity: array
indexing

for (i = 0; i < 100; i++)
A[i] = 0;

	 i = 0;
L2:if (i >= 100) goto L1
	 j = 4 * i + &A
	 *j = 0;
	 i = i + 1;
	 goto L2
L1:

Friday, October 26, 12

Strength reduction
• Like strength reduction

peephole optimization

• Peephole: replace
expensive instruction like
a * 2 with a << 1

• Replace expensive
instruction, multiply, with a
cheap one, addition

• Applies to uses of an
induction variable

• Opportunity: array
indexing

for (i = 0; i < 100; i++)
A[i] = 0;

	 i = 0; k = &A;
L2:if (i >= 100) goto L1
	 j = k;
	 *j = 0;
	 i = i + 1; k = k + 4;
	 goto L2
L1:

Friday, October 26, 12

Induction variables
• A basic induction variable is a variable j

• whose only definition within the loop is an assignment of the
form j = j ± c, where c is loop invariant

• Intuition: the variable which determines number of iterations is
usually an induction variable

• A mutual induction variable i may be

• defined once within the loop, and its value is a linear function of
some other induction variable j such that

i = c1 * j ± c2 or i = j/c1 ± c2

where c1, c2 are loop invariant

• A family of induction variables include a basic induction variable and
any related mutual induction variables

Friday, October 26, 12

Strength reduction algorithm
• Let i be an induction variable in the family of the basic induction

variable j, such that i = c1 * j + c2

• Create a new variable i’

• Initialize in preheader

i’ = c1 * j + c2

• Track value of j. After j = j + c3, perform

i’ = i’ + (c1 * c3)

• Replace definition of i with

i = i’

• Key: c1, c2, c3 are all loop invariant (or constant), so computations
like (c1 * c3) can be moved outside loop

Friday, October 26, 12

Linear test replacement
• After strength reduction, the

loop test may be the only use of
the basic induction variable

• Can now eliminate induction
variable altogether

• Algorithm

• If only use of an induction
variable is the loop test and
its increment, and if the test
is always computed

• Can replace the test with an
equivalent one using one of
the mutual induction
variables

i = 2
for (; i < k; i++)
j = 50*i
... = j

i = 2; j’ = 50 * i
for (; i < k; i++, j’ += 50)
... = j’

i = 2; j’ = 50 * i
for (; j’ < 50*k; j’ += 50)
... = j’

Strength reduction

Linear test replacement

Friday, October 26, 12

Loop unrolling

• Modifying induction
variable in each iteration
can be expensive

• Can instead unroll loops
and perform multiple
iterations for each
increment of the
induction variable

• What are the advantages
and disadvantages?

for (i = 0; i < N; i++)
A[i] = ...

for (i = 0; i < N; i += 4)
A[i] = ...
A[i+1] = ...
A[i+2] = ...
A[i+3] = ...

Unroll by factor of 4

Friday, October 26, 12

High level loop optimizations

• Many useful compiler optimizations require restructuring
loops or sets of loops

• Combining two loops together (loop fusion)

• Switching the order of a nested loop (loop interchange)

• Completely changing the traversal order of a loop (loop
tiling)

• These sorts of high level loop optimizations usually take
place at the AST level (where loop structure is obvious)

Friday, October 26, 12

Cache behavior
• Most loop transformations target cache

performance

• Attempt to increase spatial or temporal
locality

• Locality can be exploited when there is
reuse of data (for temporal locality) or
recent access of nearby data (for spatial
locality)

• Loops are a good opportunity for this: many
loops iterate through matrices or arrays

• Consider matrix-vector multiply example

• Multiple traversals of vector:
opportunity for spatial and temporal
locality

• Regular access to array: opportunity for
spatial locality

y = Ax

x

y A

i

j

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
y[i] += A[i][j] * x[j]

Friday, October 26, 12

Loop fusion

• Combine two loops
together into a single
loop

• Why is this useful?

• Is this always legal?

do I = 1, n
 c[i] = a[i]
end do
do I = 1, n
 b[i] = a[i]
end do

c[1:n]

a[1:n]

b[1:n]

a[1:n]

do I = 1, n
 c[i] = a[i]
 b[i] = a[i]
end do

c[1:n]

a[1:n]

b[1:n]

Friday, October 26, 12

Loop interchange

• Change the order of a nested
loop

• This is not always legal – it
changes the order that
elements are accessed!

• Why is this useful?

• Consider matrix-matrix
multiply when A is stored
in column-major order
(i.e., each column is stored
in contiguous memory)

x

y A

i

j

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
y[i] += A[i][j] * x[j]

Friday, October 26, 12

y A

i

j

x

Loop interchange

• Change the order of a nested
loop

• This is not always legal – it
changes the order that
elements are accessed!

• Why is this useful?

• Consider matrix-matrix
multiply when A is stored
in column-major order
(i.e., each column is stored
in contiguous memory)

for (j = 0; j < N; j++)
for (i = 0; i < N; i++)
y[i] += A[i][j] * x[j]

Friday, October 26, 12

Loop tiling

• Also called “loop blocking”

• One of the more complex
loop transformations

• Goal: break loop up into
smaller pieces to get spatial
and temporal locality

• Create new inner loops
so that data accessed in
inner loops fit in cache

• Also changes iteration
order, so may not be legal

x

y A

i

j

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
y[i] += A[i][j] * x[j]

for (ii = 0; ii < N; ii += B)
for (jj = 0; jj < N; jj += B)
for (i = ii; i < ii+B; i++)
for (j = jj; j < jj+B; j++)
y[i] += A[i][j] * x[j]

Friday, October 26, 12

x

y A

i

j

B

B

Loop tiling

• Also called “loop blocking”

• One of the more complex
loop transformations

• Goal: break loop up into
smaller pieces to get spatial
and temporal locality

• Create new inner loops
so that data accessed in
inner loops fit in cache

• Also changes iteration
order, so may not be legal

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
y[i] += A[i][j] * x[j]

for (ii = 0; ii < N; ii += B)
for (jj = 0; jj < N; jj += B)
for (i = ii; i < ii+B; i++)
for (j = jj; j < jj+B; j++)
y[i] += A[i][j] * x[j]

Friday, October 26, 12

In a real (Itanium) compiler

0

7.5

15.0

22.5

30.0

-O
1

-O
2

+ p
ref

etc
h

+ i
nte

rch
an

ge

+ u
nro

ll-j
am

+ b
loc

kin
g =

 -O
3

gc
c -

O4

GFLOPS relative to -O2; bigger is better

fa
ct

or
 fa

st
er

 th
an

 -O
2

92% of Peak
Performance

Friday, October 26, 12

Loop transformations

• Loop transformations can have dramatic effects on performance

• Doing this legally and automatically is very difficult!

• Researchers have developed techniques to determine legality of loop
transformations and automatically transform the loop

• Techniques like unimodular transform framework and polyhedral
framework

• These approaches will get covered in more detail in advanced
compilers course

Friday, October 26, 12

