Control flow graphs and
loop optimizations

Agenda

® Building control flow graphs
® |ow level loop optimizations
® Code motion
® Strength reduction
® Unrolling
® High level loop optimizations
® Loop fusion
® |oop interchange

® |oop tiling

Friday, October 26, 12

Moving beyond basic blocks

® Up until now, we have focused on single basic blocks

® What do we do if we want to consider larger units of
computation

® Whole procedures?
® Whole program?
® |dea: capture control flow of a program
® How control transfers between basic blocks due to:
® Conditionals

® Loops

Friday, October 26, 12

Representation

® Use standard three-address code

® Jump targets are labeled

® Also label beginning/end of functions

® Want to keep track of targets of jump statements

® Any statement whose execution may immediately follow
execution of jump statement

® [Explicit targets: targets mentioned in jump statement

® |mplicit targets: statements that follow conditional jump
statements

® The statement that gets executed if the branch is not
taken

Friday, October 26, 12

Running example

A=4
tl=A*B
repeat {
t2 = t1/C
if (t22W) {
M=t1l * k
t3 =M+ 1
}
H=1I
M=1t3-H
} until (T3 2 @)

Friday, October 26, 12

Running example

-4

2=t1/C

f t2 < W goto L2
=tl * k
3=M+1

=1

=13 - H

if t3 2 0 goto L3
goto L1

halt

A
t
t
i
M
t
H
M

PO WO NOOUTL A WN B

P

Friday, October 26, 12

Friday, October 26, 12

Control flow graphs

® Divides statements into basic blocks

® Basic block:a maximal sequence of statements lo, 1, I2, ..., In
such that if lj and lj+| are two adjacent statements in this

sequence, then

® The execution of |j is always immediately followed by the

execution of lj+|

® The execution of |j+| is always immediate preceded by

the execution of |;

® Edges between basic blocks represent potential flow of

control

CFG for running example

L2:
M=1t3-H
if t3 2 0 goto L3

Friday, October 26, 12

Constructing a CFG

® To construct a CFG where each node is a basic block
® |dentify leaders: first statement of a basic block

® |n program order, construct a block by appending
subsequent statements up to, but not including, the next

leader
® [dentifying leaders

® First statement in the program

® Explicit target of any conditional or unconditional branch

® Implicit target of any branch

Friday, October 26, 12

Partitioning algorithm

® |nput: set of statements, stat(i) = i™" statement in input

® Output: set of leaders, set of basic blocks where block(x) is
the set of statements in the block with leader x

® Algorithm
leaders = {1} I/Leaders always includes first statement
fori=1to|n| /l|n| = number of statements

if stat(i) is a branch, then
leaders = leaders u all potential targets
end for
worklist = leaders
while worklist not empty do
x = remove earliest statement in worklist
block(x) = {x}
for (i=x+ I;i < |n| and i & leaders; i++)
block(x) = block(x) u {i}
end for
end while

Friday, October 26, 12

Running example

1 A=4
2 tl=A*B
3 L1: t2=t1/C
4 if t2 < W goto L2
5 M=1tl*k
6 t3 =M+ 1
7 L2: H=1
8 M=1t3-H
9 if t3 2 0 goto L3
10 goto L1
11 L3: halt
Leaders =
Basic blocks =

Friday, October 26, 12

Running example

1 A=4
2 tl =A*B
3 L1: t2=t1/C
4 if t2 < W goto L2
5 M=1t1*k
6 t3 =M+ 1T
7 L2: H=1
8 M=1t3-H
9 if t3 > @ goto L3
10 goto L1
11 L3: halt
Leaders = {1,3,5,7,10, 11}

Basic blocks = {{1,2},{3,4},{5,6},{7,8,9}, {10}, {11} }

Friday, October 26, 12

Friday, October 26, 12

Putting edges in CFG

® There is a directed edge from B, to By if

® There is a branch from the last statement of B, to the first
statement (leader) of Bz

® B, immediately follows B/ in program order and B does not end
with an unconditional branch

® Input: block, a sequence of basic blocks

® Output:The CFG

for i = | to |block|
x = last statement of block(i)
if stat(x) is a branch, then
for each explicit target y of stat(x)
create edge from block i to block y
end for
if stat(x) is not unconditional then
create edge from block i to block i+/
end for

Friday, October 26, 12

Discussion

® Some times we will also consider the statement-level CFG,
where each node is a statement rather than a basic block

® FEither kind of graph is referred to as a CFG

® |n statement-level CFG, we often use a node to explicitly
represent merging of control

® Control merges when two different CFG nodes point to
the same node

® Note:if input language is structured, front-end can generate
basic block directly

® “GOTO considered harmful”

Friday, October 26, 12

Statement level CFG

Friday, October 26, 12

Loop optimization

® |ow level optimization
® Moving code around in a single loop

® Examples: loop invariant code motion, strength
reduction, loop unrolling

® High level optimization
® Restructuring loops, often affects multiple loops

® Examples: loop fusion, loop interchange, loop tiling

Friday, October 26, 12

Low level loop optimizations

® Affect a single loop

® Usually performed at three-address code stage or later in
compiler

® First problem: identifying loops

® |Low level representation doesn’t have loop statements!

Friday, October 26, 12

Friday, October 26, 12

|dentifying loops

® First, we must identify dominators

® Node a dominates node b if every possible execution
path that gets to b must pass through a

® Many different algorithms to calculate dominators — we
will not cover how this is calculated

® A back edge is an edge from b to a when a dominates b

® The target of a back edge is a loop header

Natural loops

Will focus on natural loops —
loops that arise in structured
programs

For a node n to be in a loop
with header h

® n must be dominated by h

® There must be a path in the
CFG from n to h through a
back-edge to h

Friday, October 26, 12

Loop invariant code motion

® |dea: some expressions evaluated in a loop never change;
they are loop invariant

® Can move loop invariant expressions outside the loop,
store result in temporary and just use the temporary in
each iteration

® Why is this useful?

Friday, October 26, 12

|dentifying loop invariant code

® To determine if a statement
ta=bopc
is loop invariant, find all definitions of b and c that reach

® A statement t defining b reaches s if there is a path from
to s where b is not re-defined

® s is loop invariant if both b and c satisfy one of the following
® itis constant
® all definitions that reach it are from outside the loop

® only one definition reaches it and that definition is also
loop invariant

Friday, October 26, 12

Moving loop invariant code

® Just because code is loop invariant doesn’t mean we can move it!

for (...)

if (5

for (...) a=>5
a=b+c else

a==6

® We can move a loop invariant statement a = b op c if

® There is only one definition of a in the loop

® Move instruction to a preheader, a new block put right before
loop header

Friday, October 26, 12

Strength reduction

® |ike strength reduction

peephole optimization

® Replace expensive

cheap one, addition

for (i = 0; i < 100; i++)

Peephole: replace A[i] = ©;
expensive instruction like
a*2witha<<|

i=0;
L2:if (i >= 100) goto L1
j=4*1i+8&A

nstruction, multiply, with a

Applies to uses of an *j = 0;
induction variable i=1+1;
Opportunity: array Ll.goto L2
indexing ’

Friday, October 26, 12

Friday, October 26, 12

Strength reduction

® |ike strength reduction

peephole optimization

for (i = 0; i < 100; i++)

® Peephole: replace ALl = 0;
expensive instruction like
a*2witha<<|
® Replace expensive .
instruction, multiply, with a 1= Q; k = &A;
cheap one, addition LZ:UC (i >= 100) goto L1
J=K
® Applies to uses of an *j = 0;
induction variable i=1i4+1; k=k+4;
® Opportunity: array Ll.goto L2

indexing

Induction variables

® A basic induction variable is a variable j

® whose only definition within the loop is an assignment of the
form j = j £ ¢, where c is loop invariant

® Intuition: the variable which determines number of iterations is
usually an induction variable

® A mutual induction variable i may be

® defined once within the loop, and its value is a linear function of
some other induction variable j such that

i=cl*jxc2ori=jlcl £c2
where cl, c2 are loop invariant

® A family of induction variables include a basic induction variable and
any related mutual induction variables

Friday, October 26, 12

Strength reduction algorithm

® |etibe an induction variable in the family of the basic induction
variable j, such thati = cl *j + c2

® Create a new variable i’

® |nitialize in preheader
iP=cl*j+c2

® Track value of j. After j = j + ¢3, perform
=i+ (cl ¥c3)

® Replace definition of i with
i=i

® Key:cl,c2,c3 are all loop invariant (or constant), so computations
like (c| * ¢3) can be moved outside loop

Friday, October 26, 12

Linear test replacement

After strength reduction, the i=2
loop test may be the only use of for (5 1 < k; i++)
the basic induction variable j = 50*i

- . . =]
Can now eliminate induction

variable altogether l Strength reduction

Algorithm
i=2;3 =50 *1i
® [f only use of an induction for (; i < k; i++, j’ += 50)
variable is the loop test and .= 7
its increment, and if the test

is always computed l Linear test replacement

® Can replace the test with an . 2. 40 50 * i
i=2;3 = i

equivalent one using one of >, L. >
the mutual induction for G 3 _,< 50%k; 37 += 50)
variables s =1

Friday, October 26, 12

Loop unrolling

® Modifying induction
variable in each iteration for (i = 0; i <N; i+
can be expensive A[i] =

® Can instead unroll loops
and perform multiple

1 Unroll by factor of 4
iterations for each

increment of the for (1 =0; i <N; i += 4)
induction variable A[i] = ...
Ali+1] = ...
® What are the advantages A[i+2] = ...
and disadvantages? A[i+3] = ...

Friday, October 26, 12

High level loop optimizations

® Many useful compiler optimizations require restructuring
loops or sets of loops

® Combining two loops together (loop fusion)
® Switching the order of a nested loop (loop interchange)

® Completely changing the traversal order of a loop (loop
tiling)
® These sorts of high level loop optimizations usually take
place at the AST level (where loop structure is obvious)

Friday, October 26, 12

Friday, October 26, 12

Cache behavior

® Most loop transformations target cache
performance

® Attempt to increase spatial or temporal
locality

® Locality can be exploited when there is
reuse of data (for temporal locality) or
recent access of nearby data (for spatial
locality)

® Loops are a good opportunity for this: many
loops iterate through matrices or arrays

® Consider matrix-vector multiply example

® Multiple traversals of vector:
opportunity for spatial and temporal
locality

® Regular access to array: opportunity for
spatial locality

for (i = @; i < N; i++)
for (3 = @; j < N; j++
y[il += A[i1[3] * x[3]

Loop fusion

dol=1,n
cfi] = a[i]
end do dol=1,n
dol=1,n e Combine two loops cfi] = ali]
b[i] = a[i] together into a single b[i] = ali]
end do loop end do

c[tn] b
a[1:n] []
= blt:n]

a[1:n]

i

Why is this useful?

Is this always legal?

BT | bltn]

Friday, October 26, 12

Loop interchange

® Change the order of a nested
loop

® This is not always legal — it
changes the order that
elements are accessed!

® Why is this useful?

® Consider matrix-matrix
multiply when A is stored
in column-major order
(i.e., each column is stored
in contiguous memory)

:

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
y[il += A[i1[5] * x[7]

Friday, October 26, 12

Loop interchange

® Change the order of a nested
loop

® This is not always legal — it
changes the order that
elements are accessed!

® Why is this useful?

® Consider matrix-matrix
multiply when A is stored
in column-major order
(i.e., each column is stored
in contiguous memory)

for (j = 0; j < N; j++)
for (i = 0; i < N; i++)

y[il += ALiI[3] * x[3]

Friday, October 26, 12

Loop tiling

® Also called “loop blocking”

® One of the more complex
loop transformations

® Goal: break loop up into
smaller pieces to get spatial
and temporal locality

® Create new inner loops
so that data accessed in
inner loops fit in cache

® Also changes iteration
order, so may not be legal

for (i = 0; i < N; i++)
for (3 = 0@; j < N; j++)
y[il += A[iI[3] * x[3]

for (ii = @; ii < N; ii += B)

for (jj = 0; jj < N; jj += B)
for (i =1ii; 1 < i1+B; i++)

for (3 = 3j; J < jj+B; j++
y[il += A[LI[3] * x[3]

X

T
RiREi

[
\
I
1
y A

Friday, October 26, 12

Loop tiling

® Also called “loop blocking”

® One of the more complex
loop transformations

® Goal: break loop up into
smaller pieces to get spatial
and temporal locality

® Create new inner loops
so that data accessed in
inner loops fit in cache

® Also changes iteration
order, so may not be legal

for (i = 0; i < N; i++)
for (3 =0@; j < N; j++)
y[il += A[iI[3] * x[3]

for (ii = 0; i1 < N; ii += B)

for (33 = 0; jj <N; jj +=B)
for (i =1ii; 1 < ii+4B; i++)

for (3 = 33; J < Jj+B; j+¥
y[il += A[LLI[3] * x[3]

1 x

_ Rau!
| |

y A

Friday, October 26, 12

Friday, October 26, 12

In a real (Itanium) compiler Loop transformations

GFLOPS relative to -O2; bigger is better

%00 92% of Peak ® Loop transformations can have dramatic effects on performance
— | Performance
8 25 — ® Doing this legally and automatically is very difficult!
<
£ ® Researchers have developed techniques to determine legality of loop
30 transformations and automatically transform the loop
5
£ 75 ® Techniques like unimodular transform framework and polyhedral
H framework
_ —_ —_ . . o
0 N N N . < N ® These approaches will get covered in more detail in advanced
o) o O P o .
§ s & & 9 26 compilers course
< & & e’_\@ <

Friday, October 26, 12 Friday, October 26, 12

