
Lecture Overview Introduction Constraints List Scheduling Conclusion

Introduction Scheduling (Part 1)
Introduction and Acyclic Scheduling

CS 380C: Advanced Compiler Techniques

Thursday, October 11th 2007

Lecture Overview Introduction Constraints List Scheduling Conclusion

Lecture Overview

Code Generator

Back end part of compiler (code generator)

Instruction scheduling

Register allocation

Instruction Scheduling

Input: set of instructions

Output: total order on that set

Lecture Overview Introduction Constraints List Scheduling Conclusion

Lecture Outline

Lectures

1 Introduction and acylic scheduling (today)

2 Software pipelining (Tuesday 23)

Today

Definition of instruction scheduling

Constraints

Scheduling process

Acylic scheduling: list scheduling

Lecture Overview Introduction Constraints List Scheduling Conclusion

Introduction to Instruction Scheduling

Context

Backend part of the compiler chain (code generation)

Inputs: set of instructions (assembly instructions)

Outputs: a schedule
Set of scheduling dates (one date per instruction)
Total order

Goal

Minimize the execution time (number of cycles)

Different possible objective functions to minimize:
Power consumption
. . .

Lecture Overview Introduction Constraints List Scheduling Conclusion

Constraints

Is it possible to generate any schedule?

Lecture Overview Introduction Constraints List Scheduling Conclusion

Constraints

Is it possible to generate any schedule?

Example:

a = b + c ;
d = a + 3 ;
e = f + d ;

Possibility to change
instruction order?

Lecture Overview Introduction Constraints List Scheduling Conclusion

Constraints

Is it possible to generate any schedule?

Example:

a = b + c ;
d = a + 3 ;
e = f + d ;

Possibility to change
instruction order?

No, because of data
dependences

Flow dependences on a and
d

Lecture Overview Introduction Constraints List Scheduling Conclusion

Constraints

Data dependences enforce a partial order for the final schedule

Other types of constraints?

Lecture Overview Introduction Constraints List Scheduling Conclusion

Constraints

Data dependences enforce a partial order for the final schedule

Other types of constraints?

Example:

a = b + c ;
d = e + f ;

Target architecture with 1
ALU

Lecture Overview Introduction Constraints List Scheduling Conclusion

Constraints

Data dependences enforce a partial order for the final schedule

Other types of constraints?

Example:

a = b + c ;
d = e + f ;

Target architecture with 1
ALU

Impossible to use the same
functional unit concurrently

Resource constraints

Lecture Overview Introduction Constraints List Scheduling Conclusion

Constraints

Data dependences enforce a partial order for the final schedule

Other types of constraints?

Example:

a = b + c ;
d = e + f ;

Target architecture with 1
ALU

Impossible to use the same
functional unit concurrently

Resource constraints

Constraints

Two types of constraints: data dependences and resource
usage

Lecture Overview Introduction Constraints List Scheduling Conclusion

Constraints influencing Instruction Scheduling

Constraints

Data dependences

Resource constraints

Rule

The final schedule must respect these constraints

Dealing with constraints

How to represent such constraints to deal with during the
scheduling process?

Lecture Overview Introduction Constraints List Scheduling Conclusion

Constraints influencing Instruction Scheduling

Constraints

Data dependences

Resource constraints

Rule

The final schedule must respect these constraints

Dealing with constraints

How to represent such constraints to deal with during the
scheduling process?

Data dependences → graph

Resource constraints → reservation tables or automaton

Lecture Overview Introduction Constraints List Scheduling Conclusion

Data Dependence Representation

Data Dependence Graph (DDG)

1 node ⇔ 1 instruction

1 edge ⇔ 1 flow dependence (directed graph)

Edge label = parameters of the dependence
Latency (# of cycles)
Distance (# of iterations)

Lecture Overview Introduction Constraints List Scheduling Conclusion

Data Dependence Representation

Data Dependence Graph (DDG)

1 node ⇔ 1 instruction

1 edge ⇔ 1 flow dependence (directed graph)

Edge label = parameters of the dependence
Latency (# of cycles)
Distance (# of iterations)

Example (1-cycle latency):

a = b + c ; // ADD1
d = a + 3 ; // ADD2
e = a + d ; // ADD3

Lecture Overview Introduction Constraints List Scheduling Conclusion

Data Dependence Representation

Data Dependence Graph (DDG)

1 node ⇔ 1 instruction

1 edge ⇔ 1 flow dependence (directed graph)

Edge label = parameters of the dependence
Latency (# of cycles)
Distance (# of iterations)

Example (1-cycle latency):

a = b + c ; // ADD1
d = a + 3 ; // ADD2
e = a + d ; // ADD3

ADD1 ADD21,0 ADD31,0

Lecture Overview Introduction Constraints List Scheduling Conclusion

Data Dependence Representation – Example 2

Daxpy loop: double alpha times X
plus Y

y ← α × x + y

C-like code:
for (i=0; i<N; i++)

Y[i] = alpha*X[i] + Y[i];

Targeting Itanium ISA:
LD: Load from memory (latency 6
cycles from L2 cache)
ST: Store to memory
FMA: Fuse multiply and add
(latency 4 cycles)

Lecture Overview Introduction Constraints List Scheduling Conclusion

Data Dependence Representation – Example 2

Daxpy loop: double alpha times X
plus Y

y ← α × x + y

C-like code:
for (i=0; i<N; i++)

Y[i] = alpha*X[i] + Y[i];

Targeting Itanium ISA:
LD: Load from memory (latency 6
cycles from L2 cache)
ST: Store to memory
FMA: Fuse multiply and add
(latency 4 cycles)

LD(X)

FMA

6,0

LD(Y)

6,0

ST

4,0

Lecture Overview Introduction Constraints List Scheduling Conclusion

Data Dependence Representation – Example 3

Daxpy loop with inter-iteration
dependence

C-like code:
for (i=0; i<N; i++)

Y[i+2] = alpha*X[i] + Y[i];

Inter-iteration dependence

Distance of 2

Lecture Overview Introduction Constraints List Scheduling Conclusion

Data Dependence Representation – Example 3

Daxpy loop with inter-iteration
dependence

C-like code:
for (i=0; i<N; i++)

Y[i+2] = alpha*X[i] + Y[i];

Inter-iteration dependence

Distance of 2

LD(X)

FMA

6,0

LD(Y)

6,0

ST

4,0

1,2

Lecture Overview Introduction Constraints List Scheduling Conclusion

Data Dependence Representation

Remarks

Circuits allowed for a distance > 0

For basic block, this is only a DAG

Drawbacks

One fix digit for latency
Fixed latencies
May not be suitable for cache/memory accesses

One digit for the distance
Only uniform dependences

Lecture Overview Introduction Constraints List Scheduling Conclusion

Resource Constraint Representation

Resources

Second set of constraints: resource usage/assignment

Overview

Need to check if two instructions may race for the same
resource (functional unit, bus, pipeline stage, . . .)

Can be several cycles ahead (latency > 1)

Lecture Overview Introduction Constraints List Scheduling Conclusion

Resource Constraint Representation

Resources

Second set of constraints: resource usage/assignment

Overview

Need to check if two instructions may race for the same
resource (functional unit, bus, pipeline stage, . . .)

Can be several cycles ahead (latency > 1)

State-of-the-art

2 representations: reservation tables and automaton

Lecture Overview Introduction Constraints List Scheduling Conclusion

Reservation Tables – Definition

Reservation tables

Intuitive way: resource usage of one instruction as a 2D table

Semantics

Rows: latency of the instruction (in cycles)

Columns: number of resources available in the target
architecture

Cell (i , j) is marked ⇔ instruction requires i th resource during
its j th cycle of execution

Binary tables

Several tables per instruction (alternatives/options)

Lecture Overview Introduction Constraints List Scheduling Conclusion

Reservation Tables – Example 1

Example with pipelined resources:

2 fully pipelined resources (ALU): ALU0 and ALU1

2 instructions ADD and MUL

Constraints:
ADD can be executed on ALU0 or ALU1
MUL can only be executed on ALU1

Lecture Overview Introduction Constraints List Scheduling Conclusion

Reservation Tables – Example 1

Example with pipelined resources:

2 fully pipelined resources (ALU): ALU0 and ALU1

2 instructions ADD and MUL

Constraints:
ADD can be executed on ALU0 or ALU1
MUL can only be executed on ALU1

Tables for ADD:
ALU0 ALU1

0 X
OR

ALU0 ALU1

0 X

Table for MUL:
ALU0 ALU1

0 X

Lecture Overview Introduction Constraints List Scheduling Conclusion

Reservation Tables – Example 1

ADD instruction:

ALU0 ALU1

0 X

OR

ALU0 ALU1

0 X

MUL instruction:

ALU0 ALU1

0 X

Are the following sequences valid?
ADD | ADD ?
ADD | MUL ?
MUL | MUL ?
ADD ; ADD ?
ADD | MUL ; MUL ?

Lecture Overview Introduction Constraints List Scheduling Conclusion

Reservation Tables – Example 1

ADD instruction:

ALU0 ALU1

0 X

OR

ALU0 ALU1

0 X

MUL instruction:

ALU0 ALU1

0 X

Are the following sequences valid?
ADD | ADD

√

ADD | MUL
√

MUL | MUL ×

ADD ; ADD
√

ADD | MUL ; MUL
√

Lecture Overview Introduction Constraints List Scheduling Conclusion

Reservation Tables – Example 1

ADD instruction:

ALU0 ALU1

0 X

OR

ALU0 ALU1

0 X

MUL instruction:

ALU0 ALU1

0 X

Are the following sequences valid?
ADD | ADD

√

ADD | MUL
√

MUL | MUL ×

ADD ; ADD
√

ADD | MUL ; MUL
√

Test if instructions can be scheduled
together: AND operation

Update resource usage: OR operation

Lecture Overview Introduction Constraints List Scheduling Conclusion

Reservation Tables – Example 2

Example with complex resources:

2 resources: ALU and LD/ST

3 instructions ADD, SUB and LD

Constraints:
ADD instructions have a latency of 1 cycle
SUB instructions have a latency of 2 cycles
LD uses first the ALU for 1 cycle and then the LD/ST resource
for 1 cycle

Lecture Overview Introduction Constraints List Scheduling Conclusion

Reservation Tables – Example 2

Example with complex resources:

2 resources: ALU and LD/ST

3 instructions ADD, SUB and LD

Constraints:
ADD instructions have a latency of 1 cycle
SUB instructions have a latency of 2 cycles
LD uses first the ALU for 1 cycle and then the LD/ST resource
for 1 cycle

Table for ADD:
ALU LD/ST

0 X

Table for SUB:
ALU LD/ST

0 X
1 X

Table for LD:
ALU LD/ST

0 X
1 X

Lecture Overview Introduction Constraints List Scheduling Conclusion

Reservation Tables – Example 2

ADD instruction:

ALU LD/ST

0 X

SUB instruction:

ALU LD/ST

0 X
1 X

LD instruction:

ALU LD/ST

0 X
1 X

Are the following sequences valid?

ADD | SUB ?
ADD | ADD ?
SUB | LD ?
LD ; ADD ?
LD ; SUB ?
SUB ; LD ?
ADD ; SUB ; LD ?
LD ; ADD ; SUB ?

Lecture Overview Introduction Constraints List Scheduling Conclusion

Reservation Tables – Example 2

ADD instruction:

ALU LD/ST

0 X

SUB instruction:

ALU LD/ST

0 X
1 X

LD instruction:

ALU LD/ST

0 X
1 X

Are the following sequences valid?

ADD | SUB ×

ADD | ADD ×

SUB | LD ×

LD ; ADD
√

LD ; SUB
√

SUB ; LD ×

ADD ; SUB ; LD ×

LD ; ADD ; SUB
√

Lecture Overview Introduction Constraints List Scheduling Conclusion

Reservation Tables – Example 2

ADD instruction:

ALU LD/ST

0 X

SUB instruction:

ALU LD/ST

0 X
1 X

LD instruction:

ALU LD/ST

0 X
1 X

Are the following sequences valid?

ADD | SUB ×

ADD | ADD ×

SUB | LD ×

LD ; ADD
√

LD ; SUB
√

SUB ; LD ×

ADD ; SUB ; LD ×

LD ; ADD ; SUB
√

Test and update according to latencies of
instructions

Lecture Overview Introduction Constraints List Scheduling Conclusion

Reservation Table – Summary

Use

AND operation to check if several instruction can be scheduled

OR operation to update the resource state

Advantages

Intuitive representation

Small storage

Drawbacks

Many tests

Redundant information

Lecture Overview Introduction Constraints List Scheduling Conclusion

Automaton

Insight

Pre-processing of possible resource usages

Semantics

1 state of the automaton ⇔ 1 assignment of resources

1 transition of the automaton ⇔ scheduling of an instruction
at the current cycle

Transition label

Label of a transition: the instruction to schedule

Special label: NOP instruction to advance the current cycle

Lecture Overview Introduction Constraints List Scheduling Conclusion

Automaton – Example 1

ADD instruction:

ALU0 ALU1

0 X
OR

ALU0 ALU1

0 X

MUL instruction:

ALU0 ALU1

0 X

Lecture Overview Introduction Constraints List Scheduling Conclusion

Automaton – Example 1

ADD instruction:

ALU0 ALU1

0 X
OR

ALU0 ALU1

0 X

MUL instruction:

ALU0 ALU1

0 X

00

NOP 10

ADD

01
ADD,MUL

NOP

11

ADD,MUL

NOP
ADD

NOP

2 fully-pipelined resources ⇒ 2 bits per state

Lecture Overview Introduction Constraints List Scheduling Conclusion

Automaton – Example 1

00

NOP 10

ADD

01
ADD,MUL

NOP

11

ADD,MUL

NOP
ADD

NOP

Are the following sequences valid?

ADD | ADD ?
ADD | MUL ?
MUL | MUL ?

ADD ; ADD ?
ADD | MUL ; MUL ?

Lecture Overview Introduction Constraints List Scheduling Conclusion

Automaton – Example 1

00

NOP 10

ADD

01
ADD,MUL

NOP

11

ADD,MUL

NOP
ADD

NOP

Are the following sequences valid?

ADD | ADD
√

ADD | MUL
√

MUL | MUL ×

ADD ; ADD
√

ADD | MUL ; MUL
√

Lecture Overview Introduction Constraints List Scheduling Conclusion

Automaton – Example 2

ADD instruction:
ALU LD/ST

0 X

SUB instruction:
ALU LD/ST

0 X
1 X

LD instruction:
ALU LD/ST

0 X
1 X

Lecture Overview Introduction Constraints List Scheduling Conclusion

Automaton – Example 2

ADD instruction:
ALU LD/ST

0 X

SUB instruction:
ALU LD/ST

0 X
1 X

LD instruction:
ALU LD/ST

0 X
1 X

00
00

NOP 10
00

ADD

10
10SUB

10
01

LD

NOP

NOP

11
10

NOP

01
00NOP

NOP

SUB

11
00

ADD

NOP

Lecture Overview Introduction Constraints List Scheduling Conclusion

Automaton – Example 2

00
00

NOP 10
00

ADD

10
10SUB

10
01

LD

NOP

NOP

11
10

NOP

01
00NOP

NOP

SUB

11
00

ADD

NOP

Are the following sequences valid?

ADD | SUB ?
ADD | ADD ?
SUB | LD ?
LD ; ADD ?

LD ; SUB ?
SUB ; LD ?
ADD ; SUB ; LD ?
LD ; ADD ; SUB ?

Lecture Overview Introduction Constraints List Scheduling Conclusion

Automaton – Example 2

00
00

NOP 10
00

ADD

10
10SUB

10
01

LD

NOP

NOP

11
10

NOP

01
00NOP

NOP

SUB

11
00

ADD

NOP

Are the following sequences valid?

ADD | SUB ×

ADD | ADD ×

SUB | LD ×

LD ; ADD
√

LD ; SUB
√

SUB ; LD ×

ADD ; SUB ; LD ×

LD ; ADD ; SUB
√

Lecture Overview Introduction Constraints List Scheduling Conclusion

Automaton – Summary

Use

An instruction can be currently scheduled if there is an output
arc from the current state labeled with this instruction

Update the state by following this arc

Advantages

Low query time: table lookup

Drawbacks

Huge computational time (offline)

Large storage
⇒ split into several automata

Not very flexible
e.g. hard to schedule instructions not cycle-wise

Lecture Overview Introduction Constraints List Scheduling Conclusion

Scheduling Process

Scheme of a classical scheduler

High-level part: main heuristic taken care of the data
dependences and driving the scheduling process

Low-level part: storage of the resource usages and updates of
the global assignments

Lecture Overview Introduction Constraints List Scheduling Conclusion

Scheduling Process

Scheme of a classical scheduler

High-level part: main heuristic taken care of the data
dependences and driving the scheduling process

Low-level part: storage of the resource usages and updates of
the global assignments

Scheduling process

Process begins in the high-level part

Pick up the next instruction to insert in the partial schedule

Query the low-level part for resource assignements:
If okay, then goes on with another instruction
Otherwise backtrack

Lecture Overview Introduction Constraints List Scheduling Conclusion

Acyclic Scheduling: List Scheduling

Context

Schedule a basic block ⇒ acyclic scheduling

Goal: minimize the length of the generated code

Must respect data dependences and resource constraints

Example

Sum the first element of 3 vectors X, Y and Z in the first cell
of array A:

A[0] = X[0] + Y[0] + Z[0];

3 instructions: ADD, LD, ST (1-cycle latency)

3 fully-pipelined resources: ALU, LD0 and LD/ST1 units

Lecture Overview Introduction Constraints List Scheduling Conclusion

Acyclic Scheduling – Example

DDG?

Lecture Overview Introduction Constraints List Scheduling Conclusion

Acyclic Scheduling – Example

DDG:

LD(X)

ADD1

1,0

LD(Y)

1,0

LD(Z)

ADD2

1,0

1,0

ST(A)

1,0

Reservation tables:

Lecture Overview Introduction Constraints List Scheduling Conclusion

Acyclic Scheduling – Example

DDG:

LD(X)

ADD1

1,0

LD(Y)

1,0

LD(Z)

ADD2

1,0

1,0

ST(A)

1,0

Reservation tables:
ADD instruction:

ALU LD0 LD/ST1

0 X

LD instruction:
ALU LD0 LD/ST1

0 X

ALU LD0 LD/ST1

0 X

ST instruction:
ALU LD0 LD/ST1

0 X

Lecture Overview Introduction Constraints List Scheduling Conclusion

Acyclic Scheduling – Example

DDG:

LD(X)

ADD1

1,0

LD(Y)

1,0

LD(Z)

ADD2

1,0

1,0

ST(A)

1,0

Reservation tables:
ADD instruction:

ALU LD0 LD/ST1

0 X

LD instruction:
ALU LD0 LD/ST1

0 X

ALU LD0 LD/ST1

0 X

ST instruction:
ALU LD0 LD/ST1

0 X

A possible schedule?

Lecture Overview Introduction Constraints List Scheduling Conclusion

Acyclic Scheduling – Example

A possible schedule respecting both constraints and
minimizing the total length:

LD(X) | LD(Y) ; // Cycle 1
ADD1 | LD(Z) ; // Cycle 2
ADD2 ; // Cycle 3
ST ; // Cycle 4 = length

Lecture Overview Introduction Constraints List Scheduling Conclusion

Acyclic Scheduling – Example

A possible schedule respecting both constraints and
minimizing the total length:

LD(X) | LD(Y) ; // Cycle 1
ADD1 | LD(Z) ; // Cycle 2
ADD2 ; // Cycle 3
ST ; // Cycle 4 = length

Good the execute as much instructions as possible

Pick up the good instruction is crucial (LD(X) and LD(Y)

before LD(Z))

Be careful of explicit resource assignments through reservation
tables:

Only one valid combination to execute a ST and a LD at the
same cycle

Lecture Overview Introduction Constraints List Scheduling Conclusion

List Scheduling

Principle

List scheduling algorithm is based on this approach

Sort the instruction according to priority based on data
dependences

Pick up one ready instruction in priority order

Until every instruction has been scheduled

Priority

Many priority schemes exist

We will use the height-based priority:
Priority of a node is the longest path from that node to the
furthest leaf
The path is weighted by latencies

Lecture Overview Introduction Constraints List Scheduling Conclusion

Conclusion

Instruction scheduling

Generate a total order of a set of instructions

Constraints

Data dependences
Represented as a graph: DDG

Resource usages
Represented as reservation tables or automaton

Acyclic scheduling

List scheduling

Assign priority to instructions according to their contribution
to the critical path

	Lecture Overview
	Introduction to Instruction Scheduling
	Constraints influencing Instruction Scheduling
	Acyclic Scheduling: List Scheduling
	Conclusion

