Main idea

Global Register Allocation

(Slides from Andrew Myers)

Register allocation

- For every node n in CFG, we have out[n]
- Set of temporaries live out of n
- Two variables interfere if
- both initially live (ie: function args), or
- both appear in out[n] for any n
- How to assign registers to variables?

Interference graph

Instructions Live vars
$b=a+2$
$c=b^{*} b$
$\mathrm{b}=\mathrm{c}+1$
return b * a

- Want to replace temporary variables with some fixed set of registers
- First: need to know which variables are live after each instruction
- Two simultaneously live variables cannot be allocated to the same register

Interference graph

- Nodes of the graph = variables
- Edges connect variables that interfere with one another
- Nodes will be assigned a color corresponding to the register assigned to the variable
- Two colors can't be next to one another in the graph
Instructions Live vars
$b=a+2$
$c=b^{*} b$
$b=c+1$
return b * a

Interference graph

Instructions	Live vars
$b=a+2$	
$c=b^{*} b$	a, c
$b=c+1$	b, a

Instructions	Live vars
$b=a+2$	b, a
$c=b^{*} b$	a, c
$b=c+1$	b, a
return b * a	

Interference graph

Instructions	Live vars $b=a$
$c=b^{*} b$	b, a
$b=c+1$	a, c
return $b^{*} a$	b, a

Interference graph

Instructions	Live vars
$b=a+2$	a, b
$c=b^{*} b$	a, c
$b=c+1$	a, b
return b * a	

Interference graph

Graph coloring

- Questions:
- Can we efficiently find a coloring of the graph whenever possible?
- Can we efficiently find the optimum coloring of the graph?
- How do we choose registers to avoid move instructions?
- What do we do when there aren't enough colors (registers) to color the graph?

Coloring a graph

- Kempe's algorithm [1879] for finding a Kcoloring of a graph
- Assume K=3
- Step 1 (simplify): find a node with at most K-1 edges and cut it out of the graph.
(Remember this node on a stack for later stages.)

Coloring a graph

- Once a coloring is found for the simpler graph, we can always color the node we saved on the stack
- Step 2 (color): when the simplified subgraph has been colored, add back the node on the top of the stack and assign it a color not taken by one of the adjacent nodes

Coloring

Coloring

stack:
a
e
c

Coloring

Monday, October 17, 2011

Coloring

Monday, October 17, 2011

Coloring

stack
e
c

Coloring

Coloring

stack
stack:
c

Coloring

Coloring

stack

Failure

- If the graph cannot be colored, it will eventually be simplified to graph in which every node has at least K neighbors
- Sometimes, the graph is still K-colorable!
- Finding a K-coloring in all situations is an NP-complete problem
- We will have to approximate to make register allocators fast enough

Coloring

Coloring

stack:

Coloring

Coloring

Monday, October 17, 2011

Coloring

stack:
b
d

Monday, October 17, 2011

Coloring

Coloring

Coloring

Coloring

no colors left for e!

Spilling

- Step 3 (spilling): once all nodes have K or more neighbors, pick a node for spilling - Storage on the stack
- There are many heuristics that can be used to pick a node - not in an inner loop

Spilling code

- We need to generate extra instructions to load variables from stack and store them
- These instructions use registers themselves. What to do?
- Stupid approach: always keep extra registers handy for shuffling data in and out: what a waste!
- Better approach: rewrite code introducing a new temporary; rerun liveness analysis and register allocation
- Intuition: you were not able to assign a single register to the variable that was spilled but there may be a free register available at each spot where you need to use the value of that variable

Rewriting code

- Consider: add t1 t2
- Suppose t 2 is selected for spilling and assigned to stack location [ebp-24]
- Invent new temporary t 35 for just this instruction and rewrite:
- mov t35, [ebp - 24];
- add t1, t35
- Advantage: t 35 has a very short live range and is much less likely to interfere.
- Rerun the algorithm; fewer variables will spill

Precolored Nodes

- Some variables are pre-assigned to registers
- Eg: mul on x86/pentium
- uses eax; defines eax, edx
- Eg: call on x86/pentium
- Defines (trashes) caller-save registers eax, ecx, edx
- Treat these registers as special temporaries; before beginning, add them to the graph with their colors

Optimizing Moves

- Code generation produces a lot of extra move instructions
- mov t1, t2
- If we can assign t 1 and t2 to the same register, we do not have to execute the mov
- Idea: if t1 and t2 are not connected in the interference graph, we coalesce into a single variable

Precolored Nodes

- Can't simplify a graph by removing a precolored node
- Precolored nodes are the starting point of the coloring process
- Once simplified down to colored nodes start adding back the other nodes as before

Coalescing

- Problem: coalescing can increase the number of interference edges and make a graph uncolorable

- Solution 1 (Briggs): avoid creation of high-degree ($>=\mathrm{K}$) nodes
- Solution 2 (George): a can be coalesced with b if every neighbour t of a:
- already interferes with b, or
- has low-degree (<K)

Simplify \& Coalesce

- Step 1 (simplify): simplify as much as possible without removing nodes that are the source or destination of a move (move-related nodes)
- Step 2 (coalesce): coalesce move-related nodes provided low-degree node results
- Step 3 (freeze): if neither steps 1 or 2 apply, freeze a move instruction: registers involved are marked not move-related and try step 1 again

Overall Algorithm

