
Processing control
structures

Wednesday, October 3, 12

Statement lists

• So far we have discussed generating code for one
assignment statement

• Generating code for multiple statements is easy

• Keep appending (or prepending) the code generated by a
single statement to the code generated by the rest of the
statement list

• What if statement is not an assignment?

stmt_list → stmt stmt_list | λ

Wednesday, October 3, 12

If statements

if <bool_expr_1> then
<stmt_list_1>

elseif <bool_expr_2> then
 <stmt_list_2>
...
else
<stmt_list_3>

endif

Wednesday, October 3, 12

If statements

stmt_list_1bool_expr_1

if_stmt

elseif

cond then_block else_list

stmt_list_2bool_expr_2 else

cond then_block next ...

stmt_list_3

then_block

Wednesday, October 3, 12

Generating code for ifs

if <bool_expr_1> then
<stmt_list_1>

elseif <bool_expr_2> then
 <stmt_list_2>
else
<stmt_list_3>

endif

<code for bool_expr_1>
j<!op> ELSE_1
<code for stmt_list_1>
jmp OUT

ELSE_1:
<code for bool_expr_2>
j<!op> ELSE
<code for stmt_list_2>
jmp OUT

ELSE:
<code for stmt_list_3>

OUT:

Wednesday, October 3, 12

Notes on code generation

• The <op> in j<!op> is dependent on the type of comparison
you are doing in <bool_expr>

• When you generate JUMP instructions, you should also
generate the appropriate LABELs

• But you may not put the LABEL into the code immediately

• e.g., the OUT label (when should you create this? When
should you put this in code?)

• Instead, generate the labels when you first process the if
statement (i.e., before you process the children) so that it’s
available when necessary

• Remember: labels have to be unique!

Wednesday, October 3, 12
Create the out label when you process the beginning of an if statement
Put it in code when you are done processing the if statement

Processing Loops

Wednesday, October 3, 12

While loops

while <bool_expr> do
<stmt_list>

end
stmt_listbool_expr

while_stmt

cond block

Wednesday, October 3, 12

Generating code for do-while
loops

do
<stmt_list>

while <bool_expr>;

LOOP:
<stmt_list>
<bool expr>
j<op> LOOP

OUT:

• Note that we j<op> instead of j<!
op>

• Jump when the expression is
true

• Re-evaluate expression each time

• Question: what would code for
“repeat until” loop look like?

Wednesday, October 3, 12

For loops

for (<init_stmt>;<bool_expr>;<incr_stmt>)
<stmt_list>

end

for_stmt

bool_exprinit_stmt incr_expr stmt_list

init cond next_stmt body

Wednesday, October 3, 12

Generating code: for loops

• Execute init_stmt first

• Jump out of loop if
bool_expr is false

• Execute incr_stmt after
block, jump back to top
of loop

• Question: Why do we
have the INCR label?

for (<init_stmt>;<bool_expr>;<incr_stmt>)
<stmt_list>

end

<init_stmt>
LOOP:

<bool_expr>
j<!op> OUT
<stmt_list>

INCR:
<incr_stmt>
jmp LOOP

OUT:

Wednesday, October 3, 12
continue statements: jump to INCR
break statements: jump to OUT

continue and break statements
• Continue statements: skip

past rest of block, perform
incr_stmt and restart loop

• Break statements: jump out
of loop (do not execute
incr_stmt)

• Caveats:

• Code for stmt_list is
generated earlier–where
do we jump?

• Keep track of “loop
depth” as you descend
through AST

for (<init_stmt>;<bool_expr>;<incr_stmt>)
<stmt_list>

end

<init_stmt>
LOOP:

<bool_expr>
j<!op> OUT
<stmt_list>

INCR:
<incr_stmt>
jmp LOOP

OUT:

Wednesday, October 3, 12
continue statements: jump to INCR
break statements: jump to OUT

Switch statements

switch (<expr>)
case <const_list>: <stmt_list>
case <const_list>: <stmt_list>
...
default: <stmt_list>

end

switch_stmt

case_list

case_stmt

const_list stmt_list

case_stmt

const_list stmt_list

option block

next_case

option block

stmt_list

cases default_block

Wednesday, October 3, 12

Switch statements

• Generated code should
evaluate <expr> and make
sure that some case matches
the result

• Question: how to decide
where to jump?

switch (<expr>)
case <const_list>: <stmt_list>
case <const_list>: <stmt_list>
...
default: <stmt_list>

end

Wednesday, October 3, 12

Deciding where to jump

• Problem: do not know which label to jump to until switch
expression is evaluated

• Use a jump table: an array indexed by case values, contains
address to jump to

• If table is not full (i.e., some possible values are skipped),
can point to a default clause

• If default clause does not exist, this can point to error
code

• Problems

• If table is sparse, wastes a lot of space

• If many choices, table will be very large

Wednesday, October 3, 12

Jump table example
Consider the code:
((xxxx) is address of code)

Case x is
(0010) When 0: stmts
(0017) When 1: stmts
(0192) When 2: stmts
(0198) When 3 stmts;
(1000) When 5 stmts;
(1050) Else stmts;

Jump table has 6 entries:

0 JUMP 0010
1 JUMP 0017
2 JUMP 0192
3 JUMP 0198
4 JUMP 1050
5 JUMP 1000

Table only has one
Unnecessary row
(for choice 4)

Wednesday, October 3, 12

0 JUMP 0010
1 JUMP 0017
2 JUMP 0192
3 JUMP 0198
4 JUMP 1050
. . . JUMP 1050
986 JUMP 1050
987 JUMP 1000

Jump table example
Consider the code:
((xxxx) Is address of code)

Case x is
(0010) When 0: stmts0
(0017) When 1: stmts1
(0192) When 2: stmts2
(0198) When 3 stmts3
(1000) When 987 stmts4
(1050) When others stmts5

Jump table has 6 entries:

Table only has 983 unnecessary rows.
Doesn’t appear to be the right thing to
do! NOTE: table size is
proportional to range of choice
clauses, not number of clauses!

Wednesday, October 3, 12

Do a binary search
Consider the code: ((xxxx) Is
address of code)

Case x is
(0010) When 0: stmts0
(0017) When 1: stmts1
(0192) When 2: stmts2
(0198) When 3 stmts3
(1000) When 987 stmts4
(1050) When others stmts5

Jump table has 6 entries:

0 JUMP 0010
1 JUMP 0017
2 JUMP 0192
3 JUMP 0198

987 JUMP 1000

Perform a binary search on the table. If the entry is found, then
jump to that offset. If the entry isn’t found, jump to others
clause. O(log n) time, n is the size of the table, for each jump.

Wednesday, October 3, 12

Linear search example
Consider the code:
(xxxx) Is offset of local
Code start from the
Jump instruction

Case x is
(0010) When 0: stmts
(0017) When 1: stmts
(0192) When 2: stmts
(1050) When others stmts;

If there are a small number of
choices, then do an in-line linear
search. A straightforward way to do
this is generate code analogous to an
IF THEN ELSE.

If (x == 0) then stmts1;
Elseif (x = 1) then stmts2;
Elseif (x = 2) then stmts3;
Else stmts4;

O(n) time, n is the size of the table, for each jump.

Wednesday, October 3, 12

Dealing with jump tables
switch (<expr>)
case <const_list>: <stmt_list>
case <const_list>: <stmt_list>
...
default: <stmt_list>

end

<expr>
<code for jump table>

LABEL0:
<stmt_list>

LABEL1:
<stmt_list>

...
DEFAULT:
<stmt_list>

OUT:

• Generate labels, code, then build
jump table

• Put jump table after generated
code

• Why do we need the OUT label?

• In case of break statements

Wednesday, October 3, 12

