Semantic actions for
declarations and
expressions

Semantic actions

® Semantic actions are routines called as productions (or parts of
productions) are recognized

® Actions work together to build up intermediate representations
<if-stmt> — |F <expr> #startif THEN <stmts> END #endif

® Semantic action for #startif needs to pass a semantic record to
#Hendif

® For LL parsers, semantic actions work easily, because they are
predictive

® For LR parsers, do not know which production is used until reduce
step; need to place semantic actions at end of production

<if-stmt> — <begin-if> THEN <stmts> END #endif

<begin-if> = IF <expr> #startif

Friday, September 21, 12

Semantic Records

® Data structures produced by semantic actions

® Associated with both non-terminals (code structures) and
terminals (tokens/symbols)

® Do not have to exist (e.g., no action associated with ;")

® Control statements often require multiple actions (see <if-
stmt> example on previous slide)

® Typically: semantic records are produced by actions
associated with terminals, and are passed to actions
associated with non-terminals

® Standard organization: semantic stack

Friday, September 21, 12

Example of semantic stack

® Consider following grammar:

assigh — |ID := expr
expr — term addop term

term — ID|LIT
addop — + | —

® And now annotated with semantic actions:

assign — ID #process_id := expr #gen_assign
expr — term addop term #gen_infix

term — ID #process_id | LIT #process_11it
addop — + #process_p | —#process_m

Friday, September 21, 12

Example of semantic stack

® Considera:=b + [;
® Sequence of semantic actions invoked:

process_id, process_id, process_op, process_lit, gen_infix,
gen_assign

Friday, September 21, 12

How do we manipulate stack!?

® Action-controlled: actions directly manipulate stack (call push
and pop)

® FParser-controlled: parser automatically manipulates stack

Friday, September 21, 12

LR-parser controlled

® Shift operations push semantic records onto stack
(describing the token)

® Reduce operations pop semantic records associated with
symbols off stack, replace with semantic record associated

with production

® Action routines do not see stack. Can refer to popped off
records using handles

® e.g.,in yacc/bison, use $1, $2 etc. to refer to popped off
records

Friday, September 21, 12

LL-controlled

® Parse stack contains predicted productions, not matched
productions

® Push empty semantic records onto stack when production
is predicted

® Fill in records as symbols are matched

® When non-terminal is matched, pop off records associated
with RHS, use to fill in the record associated with LHS
(leave LHS record on stack)

Friday, September 21, 12

Overview of declarations

® Symbol tables

® Action routines for simple declarations

® Action routines for advanced features
® Constants

® Enumerations

® Arrays
® Structs
® Pointers

Friday, September 21, 12

Symbol Tables

® Table of declarations, associated with each scope
® One entry for each variable declared

® Store declaration attributes (e.g., name and type) — will discuss this
in a few slides

® Table must be dynamic (why?)

® Possible implementations
® Linear list (easy to implement, only good for small programs)
® Binary search trees (better for large programs, but can still be slow)
® Hash tables (best solution)

® BSTs and Hash tables can be difficult to implement, but languages like
C++ and Java provide implementations for you

Friday, September 21, 12

Managing symbol tables

® Maintain list of all symbol tables
® Maintain stack marking “current” symbol table

® Whenever you see a program block that allows
declarations, create a new symbol table

® Push onto stack as “current” symbol table
® When you see declaration, add to current symbol table

® When you exit a program block, pop current symbol table
off stack

Friday, September 21, 12

Handling declarations

® Declarations of variables, arrays, functions, etc.
® C(Create entry in symbol table
® Allocate space in activation record

® Activation record stores information for a particular
function call (arguments, return value, local variables,
etc.)

® Need to have space for all of this information
® Activation record stored on program stack

® We will discuss these in more detail when we get to
functions

Friday, September 21, 12

Simple declarations

® Declarations of simple types
INT x;
FLOAT f;
® Semantic action should
® Get the type and name of identifier
® Check to see if identifier is already in the symbol table

® |fitisn’t,add it,if itis, error

Friday, September 21, 12

Simple declarations (cont.)

® How do we get the type and name of an identifier?
var_decl -» var_type 1d;
var_type - INT | FLOAT
1d » IDENTIFIER

® Where do we put the semantic actions?

Friday, September 21, 12

Simple declarations (cont.)

® How do we get the type and name of an identifier?
var_decl » var_type 1d; #decl_1id
var_type » INT #int_type | FLOAT #float_type
1d » IDENTIFIER #id

® Where do we put the semantic actions?

® When we process #int_type and #id, can store the type
and identifier name and pass them to #decl_id

® When creating activation record, allocate space based on
type (why?)

Friday, September 21, 12

Constants and ranges

e Constants
® Symbol table needs a field to store constant value

® |n general, the constant value may not be known until
runtime (static final int 1 = 2 + J;)

® At compile time, we create code that allows the
initialization expression to assign to the variable, then
evaluate the expression at run-time

® Range types (like in Pascal)

b

Type alpha = ‘a’ .. ‘z

® Need an entry for the type as well as the upper and lower
bounds

Friday, September 21, 12

Enums

® Enumeration types: enum days {mon, tue, wed, thu, fri,
sat, sun};

® Create an entry for the enumeration type itself, and an entry
for each member of the enumeration

® Entries are usually linked

® Processing enum declaration sets the “enum counter” to
lower bound (usually 0)

® Each new member seen is assigned the next value and the
counter is incremented

® In some languages (e.g., C), enum members may be
assigned particular values. Should ensure that enum value

isn’t reused

Friday, September 21, 12

Arrays

® Fixed size (static) arrays
int A[10];
® Store type and length of array

® When creating activation record, allocate enough space on stack
for array

® What about variable size arrays?
int A[M][N]
® Store information for a dope vector
® Tracks dimensionality of array, size, location
® Activation record stores dope vector

® At runtime, allocate array at top of stack, fill in dope vector

Friday, September 21, 12

Structs/classes

® (Can have variables/methods declared inside, need extra
symbol table

® Need to store visibility of members

® Complication: can create multiple instances of a struct or
class!

® Need to store offset of each member in struct

Friday, September 21, 12

Pointers

® Need to store type information and length of what it points
to

® Needed for pointer arithmetic
int * a = &y;
z = *(a + 1);
® Need to worry about forward declarations

® The thing being pointed to may not have been declared yet

Class Foo;
Foo * head;

Class Foo { ... };

Friday, September 21, 12

Abstract syntax trees

® Tree representing
structure of the program

® Built by semantic .
, binary_op
actions operator: +
® Some compilers skip
this
® AST nodes identifier literal
||X|| II-IOII
® Represent program
construct
® Store important

information about
construct

Friday, September 21, 12

ASTs for References

Referencing identifiers

® Different behavior if identifier is used in a declaration vs.
expression

® |[f used in declaration, treat as before
® |[f in expression, need to:
® Check if it is symbol table

® Create new AST node with pointer to symbol table
entry

® Note: may want to directly store type information in
AST (or could look up in symbol table each time)

Friday, September 21, 12

Referencing Literals

® What about if we see a literal?

primary = INTLITERAL | FLOATLITERAL
® Create AST node for literal
® Store string representation of literal

® “|557,2.45” etc.

® At some point, this will be converted into actual representation
of literal

® For integers, may want to convert early (to do constant
folding)

® For floats, may want to wait (for compilation to different
machines). Why?

Friday, September 21, 12

More complex references

® Arrays
® A[i][j] is equivalent to
A+ 1*¥dim_1 + j
® Extract dim_1 from symbol table or dope vector
® Structs

® Afis equivalent to

&A + offset(f)
® Find offset(f) in symbol table for declaration of record
® Strings

® Complicated—depends on language

Friday, September 21, 12

Expressions

® Three semantic actions needed
® eval binary (processes binary expressions)

® Create AST node with two children, point to AST
nodes created for left and right sides

® eval unary (processes unary expressions)
® Create AST node with one child
® process_op (determines type of operation)

® Store operator in AST node

Friday, September 21, 12

Expressions example

o x+y+5

Friday, September 21, 12

Expressions example

o x+y+5

identifier
IIXII

Friday, September 21, 12

Expressions example

o x+y+5

identifier identifier
IIXII |Iyll

Friday, September 21, 12

Expressions example

o X+)’+5

binary_op
operator: +

identifier
Ilyll

identifier
IlXII

Friday, September 21, 12

Expressions example

o X+)’+5

binary_op
operator: +

identifier
llyll

identifier
I|XI|

Friday, September 21, 12

Expressions example

o X+)’+5

binary_op
operator: +

binary_op
operator: +

identifier
llyll

identifier
||XII

Friday, September 21, 12

Generating three-address code

® For project, will need to generate three-address code
® opABC//[C=AopB
® (Can do this directly or after building AST

Friday, September 21, 12

Generating code from an AST

® Do a post-order walk of AST to generate code, pass generated code up

data_object generate_code() {
data_object lcode = left.generate_code();
data_object rcode = right.generate_code();
return generate_self(lcode, rcode);

}

® Important things to note:

® A node generates code for its children before generating code for
itself

® Data object can contain code or other information
® Code generation is context free

® What does this mean?

Friday, September 21, 12

Generating code directly

® Generating code directly using semantic routines is very
similar to generating code from the AST

® Why!

® Because post-order traversal is essentially what happens
when you evaluate semantic actions as you pop them off
stack

® || parser:evaluate left child before right child
® LR parser: evaluate right child before left child

® AST nodes are just semantic records

Friday, September 21, 12

Data objects

® Records various important info

® The temporary storing the result of the current
expression

® Flags describing value in temporary
® Constant, L-value, R-value

® (Code for expression

Friday, September 21, 12

| -values vs. R-values

® | -values: addresses which can be stored to or loaded from

® R-values: data (often loaded from addresses)

Expressions operate on R-values

® Assignment statements:

L-value := R-value
® Consider the statementa := a
® the a on LHS refers to the memory location referred to by a

and we store to that location

the a on RHS refers to data stored in memory location
referred to by a so we will load from that location to produce
the R-value

Friday, September 21, 12

Temporaries

® Can be thought of as an unlimited pool of registers (with
memory to be allocated at a later time)

® Need to declare them like variables

® Name should be something that cannot appear in the
program (e.g., use illegal character as prefix)

® Memory must be allocated if address of temporary can be
taken (e.g.a := &b)

® Temporaries can hold either L-values or R-values

Friday, September 21, 12

Simple cases

® Generating code for constants/literals

® Store constant in temporary

® Optional: pass up flag specifying this is a constant
® Generating code for identifiers

® Generated code depends on whether identifier is used
as L-value or R-value

® Do we load from it! Or store to it!
® One solution: just pass variable up to next level

® Set flag specifying this is an L-value

Friday, September 21, 12

Generating code for expressions

® Create a new temporary for result of expression
® Examine data-objects from subtrees

® [f temporaries are L-values, load data from them into new
temporaries

® Generate code to perform operation

® |f temporaries are constant, can perform operation immediately
® No need to perform code generation!

® Store result in new temporary
® s this an L-value or an R-value!?

® Return code for entire expression

Friday, September 21, 12

Generating code for assignment

® Store value of temporary from RHS into address specified by
temporary from LHS

Why does this work!?

Because temporary for LHS holds an address

If LHS is an identifier, we just stored the address of it in
temporary

If LHS is complex expression
int *p = &x
*ip+ 1 =7,

it still holds an address, even though the address was
computed by an expression

Friday, September 21, 12

