Semantic actions for declarations and expressions
Semantic actions

- **Semantic actions** are routines called as productions (or parts of productions) are recognized.

- Actions work together to build up intermediate representations.

 \[
 \text{<if-stmt>} \rightarrow \text{IF} \ <\text{expr}> \ #\text{startif} \ \text{THEN} \ <\text{stmts}> \ \text{END} \ #\text{endif}
 \]

- Semantic action for `#startif` needs to pass a **semantic record** to `#endif`.

- For LL parsers, semantic actions work easily, because they are predictive.

- For LR parsers, do not know which production is used until reduce step; need to place semantic actions at end of production.

 \[
 \text{<if-stmt>} \rightarrow \ <\text{begin-if}> \ \text{THEN} \ <\text{stmts}> \ \text{END} \ #\text{endif}
 \]

 \[
 \text{<begin-if>} \rightarrow \ \text{IF} \ <\text{expr}> \ #\text{startif}
 \]
Semantic Records

- Data structures produced by semantic actions
- Associated with both non-terminals (code structures) and terminals (tokens/symbols)
- Do not have to exist (e.g., no action associated with “;”)
- Control statements often require multiple actions (see <if-stmt> example on previous slide)
- Typically: semantic records are produced by actions associated with terminals, and are passed to actions associated with non-terminals
- Standard organization: *semantic stack*
Example of semantic stack

- Consider following grammar:

 assign → ID := expr
 expr → term addop term
 term → ID | LIT
 addop → + | –

- And now annotated with semantic actions:

 assign → ID #process_id := expr #gen_assign
 expr → term addop term #gen_infix
 term → ID #process_id | LIT #process_lit
 addop → + #process_p | – #process_m
Example of semantic stack

• Consider \(a := b + 1; \)

• Sequence of semantic actions invoked:

 process_id, process_id, process_op, process_lit, gen_infix, gen_assign
How do we manipulate stack?

- *Action-controlled*: actions directly manipulate stack (call push and pop)
- *Parser-controlled*: parser automatically manipulates stack
LR-parser controlled

- Shift operations push semantic records onto stack (describing the token)

- Reduce operations pop semantic records associated with symbols off stack, replace with semantic record associated with production

- Action routines do not see stack. Can refer to popped off records using handles
 - e.g., in yacc/bison, use $1, $2 etc. to refer to popped off records
LL-controlled

- Parse stack contains predicted productions, not matched productions
- Push empty semantic records onto stack when production is predicted
- Fill in records as symbols are matched
- When non-terminal is matched, pop off records associated with RHS, use to fill in the record associated with LHS (leave LHS record on stack)
Overview of declarations

- Symbol tables
- Action routines for simple declarations
- Action routines for advanced features
 - Constants
 - Enumerations
 - Arrays
 - Structs
 - Pointers
Symbol Tables

- Table of declarations, associated with each scope
- One entry for each variable declared
 - Store declaration attributes (e.g., name and type) – will discuss this in a few slides
- Table must be dynamic (why?)
- Possible implementations
 - Linear list (easy to implement, only good for small programs)
 - Binary search trees (better for large programs, but can still be slow)
 - Hash tables (best solution)
- BSTs and Hash tables can be difficult to implement, but languages like C++ and Java provide implementations for you
Managing symbol tables

- Maintain list of all symbol tables
- Maintain stack marking “current” symbol table
- Whenever you see a program block that allows declarations, create a new symbol table
 - Push onto stack as “current” symbol table
- When you see declaration, add to current symbol table
- When you exit a program block, pop current symbol table off stack
Handling declarations

- Declarations of variables, arrays, functions, etc.
- Create entry in symbol table
- Allocate space in activation record
 - Activation record stores information for a particular function call (arguments, return value, local variables, etc.)
 - Need to have space for all of this information
- Activation record stored on program stack
- We will discuss these in more detail when we get to functions
Simple declarations

• Declarations of simple types

 INT x;
 FLOAT f;

• Semantic action should

 • Get the type and name of identifier
 • Check to see if identifier is already in the symbol table
 • If it isn’t, add it, if it is, error
Simple declarations (cont.)

• How do we get the type and name of an identifier?

 var_decl → var_type id;

 var_type → INT | FLOAT

 id → IDENTIFIER

• Where do we put the semantic actions?
Simple declarations (cont.)

• How do we get the type and name of an identifier?

\[\text{var}_\text{decl} \rightarrow \text{var}_\text{type} \text{ id} ; \ #\text{decl}_\text{id} \]

\[\text{var}_\text{type} \rightarrow \text{INT} \ #\text{int}_\text{type} \ | \ \text{FLOAT} \ #\text{float}_\text{type} \]

\[\text{id} \rightarrow \text{IDENTIFIER} \ #\text{id} \]

• Where do we put the semantic actions?

 • When we process \#int_type and \#id, can store the type and identifier name and pass them to \#decl_id

 • When creating activation record, allocate space based on type (why?)
Constants and ranges

- Constants
 - Symbol table needs a field to store constant value
 - In general, the constant value may not be known until runtime (static final int i = 2 + j;)
 - At compile time, we create code that allows the initialization expression to assign to the variable, then evaluate the expression at run-time

- Range types (like in Pascal)
 - Type alpha = ‘a’ .. ‘z’
 - Need an entry for the type as well as the upper and lower bounds
• Enumeration types: enum days {mon, tue, wed, thu, fri, sat, sun};
• Create an entry for the enumeration type itself, and an entry for each member of the enumeration
• Entries are usually linked
• Processing enum declaration sets the “enum counter” to lower bound (usually 0)
• Each new member seen is assigned the next value and the counter is incremented
• In some languages (e.g., C), enum members may be assigned particular values. Should ensure that enum value isn’t reused
Arrays

- Fixed size (static) arrays

  ```
  int A[10];
  ```

- Store type and length of array
- When creating activation record, allocate enough space on stack for array

- What about variable size arrays?

  ```
  int A[M][N]
  ```

- Store information for a *dope vector*

 - Tracks dimensionality of array, size, location
 - Activation record stores dope vector
 - At runtime, allocate array at top of stack, fill in dope vector
Structs/classes

- Can have variables/methods declared inside, need extra symbol table
- Need to store visibility of members
- Complication: can create multiple instances of a struct or class!
 - Need to store offset of each member in struct
Pointers

- Need to store type information and length of what it points to
 - Needed for pointer arithmetic
    ```
    int * a = &y;
    z = *(a + 1);
    ```
- Need to worry about forward declarations
 - The thing being pointed to may not have been declared yet
    ```
    Class Foo;
    Foo * head;
    Class Foo { ... };
    ```
Abstract syntax trees

- Tree representing structure of the program
- Built by semantic actions
- Some compilers skip this
- AST nodes
 - Represent program construct
 - Store important information about construct

```
binary_op
operator: +
```

```
identifier
"x"
```

```
literal
"10"
```
ASTs for References
Referencing identifiers

- Different behavior if identifier is used in a declaration vs. expression
 - If used in declaration, treat as before
 - If in expression, need to:
 - Check if it is symbol table
 - Create new AST node with pointer to symbol table entry
 - Note: may want to directly store type information in AST (or could look up in symbol table each time)
Referencing Literals

- What about if we see a literal?

 \[
 \text{primary} \rightarrow \text{INTLITERAL} \mid \text{FLOATLITERAL}
 \]

- Create AST node for literal

- Store string representation of literal
 - “155”, “2.45” etc.

- At some point, this will be converted into actual representation of literal
 - For integers, may want to convert early (to do constant folding)
 - For floats, may want to wait (for compilation to different machines). Why?
More complex references

- **Arrays**
 - $A[i][j]$ is equivalent to $A + i \cdot \text{dim}_1 + j$
 - Extract dim_1 from symbol table or dope vector

- **Structs**
 - $A.f$ is equivalent to $&A + \text{offset}(f)$
 - Find $\text{offset}(f)$ in symbol table for declaration of record

- **Strings**
 - Complicated—depends on language
Expressions

• Three semantic actions needed
 • eval_binary (processes binary expressions)
 • Create AST node with two children, point to AST nodes created for left and right sides
 • eval_unary (processes unary expressions)
 • Create AST node with one child
 • process_op (determines type of operation)
 • Store operator in AST node
Expressions example

- $x + y + 5$
Expressions example

- \(x + y + 5 \)
Expressions example

• \[x + y + 5\]
Expressions example

- $x + y + 5$
Expressions example

- $x + y + 5$
Expressions example

- $x + y + 5$
Generating three-address code

- For project, will need to generate three-address code
 - op A, B, C // C = A op B
- Can do this directly or after building AST
Generating code from an AST

- Do a post-order walk of AST to generate code, pass generated code up

  ```java
  data_object generate_code() {
    data_object lcode = left.generate_code();
    data_object rcode = right.generate_code();
    return generate_self(lcode, rcode);
  }
  ```

- Important things to note:
 - A node generates code for its children before generating code for itself
 - Data object can contain code or other information
 - Code generation is context free
 - What does this mean?
Generating code directly

• Generating code directly using semantic routines is very similar to generating code from the AST

• Why?

• Because post-order traversal is essentially what happens when you evaluate semantic actions as you pop them off stack

 • LL parser: evaluate left child before right child
 • LR parser: evaluate right child before left child

• AST nodes are just semantic records
Data objects

- Records various important info
- The temporary storing the result of the current expression
- Flags describing value in temporary
 - Constant, L-value, R-value
- Code for expression
L-values vs. R-values

• L-values: addresses which can be stored to or loaded from
• R-values: data (often loaded from addresses)
 • Expressions operate on R-values
• Assignment statements:
 L-value := R-value
• Consider the statement a := a
 • the a on LHS refers to the memory location referred to by a and we store to that location
 • the a on RHS refers to data stored in memory location referred to by a so we will load from that location to produce the R-value
Temporaries

- Can be thought of as an unlimited pool of registers (with memory to be allocated at a later time)
- Need to declare them like variables
- Name should be something that cannot appear in the program (e.g., use illegal character as prefix)
- Memory must be allocated if address of temporary can be taken (e.g. \(a := \&b \))
- Temporaries can hold either L-values or R-values
Simple cases

• Generating code for constants/literals
 • Store constant in temporary
 • Optional: pass up flag specifying this is a constant

• Generating code for identifiers
 • Generated code depends on whether identifier is used as L-value or R-value
 • Do we load from it? Or store to it?
 • One solution: just pass variable up to next level
 • Set flag specifying this is an L-value
Generating code for expressions

- Create a new temporary for result of expression
- Examine data-objects from subtrees
- If temporaries are L-values, load data from them into new temporaries
 - Generate code to perform operation
- If temporaries are constant, can perform operation immediately
 - No need to perform code generation!
- Store result in new temporary
 - Is this an L-value or an R-value?
- Return code for entire expression
Generating code for assignment

- Store value of temporary from RHS into address specified by temporary from LHS
- Why does this work?
- Because temporary for LHS holds an address
 - If LHS is an identifier, we just stored the address of it in temporary
 - If LHS is complex expression

    ```c
    int *p = &x
    *(p + 1) = 7;
    ```

 it *still* holds an address, even though the address was computed by an expression