
Semantic actions for
declarations and

expressions

Friday, September 21, 12

Semantic actions
• Semantic actions are routines called as productions (or parts of

productions) are recognized

• Actions work together to build up intermediate representations

<if-stmt> → IF <expr> #startif THEN <stmts> END #endif

• Semantic action for #startif needs to pass a semantic record to
#endif

• For LL parsers, semantic actions work easily, because they are
predictive

• For LR parsers, do not know which production is used until reduce
step; need to place semantic actions at end of production

<if-stmt> → <begin-if> THEN <stmts> END #endif

<begin-if> → IF <expr> #startif

Friday, September 21, 12

Semantic Records

• Data structures produced by semantic actions

• Associated with both non-terminals (code structures) and
terminals (tokens/symbols)

• Do not have to exist (e.g., no action associated with “;”)

• Control statements often require multiple actions (see <if-
stmt> example on previous slide)

• Typically: semantic records are produced by actions
associated with terminals, and are passed to actions
associated with non-terminals

• Standard organization: semantic stack

Friday, September 21, 12

Example of semantic stack
• Consider following grammar:

• And now annotated with semantic actions:

assign !→ ID := expr
expr! → term addop term
term! → ID | LIT
addop!→ + | –

assign !→ ID #process_id := expr #gen_assign
expr! → term addop term #gen_infix
term! → ID #process_id | LIT #process_lit
addop!→ + #process_p | – #process_m

Friday, September 21, 12

Example of semantic stack
• Consider a := b + 1;

• Sequence of semantic actions invoked:

process_id, process_id, process_op, process_lit, gen_infix,
gen_assign

Friday, September 21, 12

How do we manipulate stack?

• Action-controlled: actions directly manipulate stack (call push
and pop)

• Parser-controlled: parser automatically manipulates stack

Friday, September 21, 12

LR-parser controlled

• Shift operations push semantic records onto stack
(describing the token)

• Reduce operations pop semantic records associated with
symbols off stack, replace with semantic record associated
with production

• Action routines do not see stack. Can refer to popped off
records using handles

• e.g., in yacc/bison, use $1, $2 etc. to refer to popped off
records

Friday, September 21, 12

LL-controlled

• Parse stack contains predicted productions, not matched
productions

• Push empty semantic records onto stack when production
is predicted

• Fill in records as symbols are matched

• When non-terminal is matched, pop off records associated
with RHS, use to fill in the record associated with LHS
(leave LHS record on stack)

Friday, September 21, 12

Overview of declarations

• Symbol tables

• Action routines for simple declarations

• Action routines for advanced features

• Constants

• Enumerations

• Arrays

• Structs

• Pointers

Friday, September 21, 12

Symbol Tables

• Table of declarations, associated with each scope

• One entry for each variable declared

• Store declaration attributes (e.g., name and type) – will discuss this
in a few slides

• Table must be dynamic (why?)

• Possible implementations

• Linear list (easy to implement, only good for small programs)

• Binary search trees (better for large programs, but can still be slow)

• Hash tables (best solution)

• BSTs and Hash tables can be difficult to implement, but languages like
C++ and Java provide implementations for you

Friday, September 21, 12

Managing symbol tables

• Maintain list of all symbol tables

• Maintain stack marking “current” symbol table

• Whenever you see a program block that allows
declarations, create a new symbol table

• Push onto stack as “current” symbol table

• When you see declaration, add to current symbol table

• When you exit a program block, pop current symbol table
off stack

Friday, September 21, 12

Handling declarations

• Declarations of variables, arrays, functions, etc.

• Create entry in symbol table

• Allocate space in activation record

• Activation record stores information for a particular
function call (arguments, return value, local variables,
etc.)

• Need to have space for all of this information

• Activation record stored on program stack

• We will discuss these in more detail when we get to
functions

Friday, September 21, 12

Simple declarations

• Declarations of simple types

INT x;

FLOAT f;

• Semantic action should

• Get the type and name of identifier

• Check to see if identifier is already in the symbol table

• If it isn’t, add it, if it is, error

Friday, September 21, 12

Simple declarations (cont.)
• How do we get the type and name of an identifier?

var_decl ! var_type id;

var_type ! INT | FLOAT

id ! IDENTIFIER

• Where do we put the semantic actions?

Friday, September 21, 12

Simple declarations (cont.)
• How do we get the type and name of an identifier?

var_decl ! var_type id; #decl_id

var_type ! INT #int_type | FLOAT #float_type

id ! IDENTIFIER #id

• Where do we put the semantic actions?

• When we process #int_type and #id, can store the type
and identifier name and pass them to #decl_id

• When creating activation record, allocate space based on
type (why?)

Friday, September 21, 12

Constants and ranges

• Constants

• Symbol table needs a field to store constant value

• In general, the constant value may not be known until
runtime (static final int i = 2 + j;)

• At compile time, we create code that allows the
initialization expression to assign to the variable, then
evaluate the expression at run-time

• Range types (like in Pascal)

Type alpha = ‘a’ .. ‘z’

• Need an entry for the type as well as the upper and lower
bounds

Friday, September 21, 12

Enums

• Enumeration types: enum days {mon, tue, wed, thu, fri,
sat, sun};

• Create an entry for the enumeration type itself, and an entry
for each member of the enumeration

• Entries are usually linked

• Processing enum declaration sets the “enum counter” to
lower bound (usually 0)

• Each new member seen is assigned the next value and the
counter is incremented

• In some languages (e.g., C), enum members may be
assigned particular values. Should ensure that enum value
isn’t reused

Friday, September 21, 12

Arrays
• Fixed size (static) arrays

int A[10];

• Store type and length of array

• When creating activation record, allocate enough space on stack
for array

• What about variable size arrays?

int A[M][N]

• Store information for a dope vector

• Tracks dimensionality of array, size, location

• Activation record stores dope vector

• At runtime, allocate array at top of stack, fill in dope vector

Friday, September 21, 12

Structs/classes

• Can have variables/methods declared inside, need extra
symbol table

• Need to store visibility of members

• Complication: can create multiple instances of a struct or
class!

• Need to store offset of each member in struct

Friday, September 21, 12

Pointers
• Need to store type information and length of what it points

to

• Needed for pointer arithmetic

int * a = &y;

z = *(a + 1);

• Need to worry about forward declarations

• The thing being pointed to may not have been declared yet

Class Foo;

Foo * head;

Class Foo { ... };

Friday, September 21, 12

Abstract syntax trees
• Tree representing

structure of the program

• Built by semantic
actions

• Some compilers skip
this

• AST nodes

• Represent program
construct

• Store important
information about
construct

binary_op

operator: +

identifier

"x"

literal

"10"

Friday, September 21, 12

ASTs for References

Friday, September 21, 12

Referencing identifiers

• Different behavior if identifier is used in a declaration vs.
expression

• If used in declaration, treat as before

• If in expression, need to:

• Check if it is symbol table

• Create new AST node with pointer to symbol table
entry

• Note: may want to directly store type information in
AST (or could look up in symbol table each time)

Friday, September 21, 12

Referencing Literals
• What about if we see a literal?

primary → INTLITERAL | FLOATLITERAL

• Create AST node for literal

• Store string representation of literal

• “155”, “2.45” etc.

• At some point, this will be converted into actual representation
of literal

• For integers, may want to convert early (to do constant
folding)

• For floats, may want to wait (for compilation to different
machines). Why?

Friday, September 21, 12

More complex references
• Arrays

• A[i][j] is equivalent to

A + i*dim_1 + j

• Extract dim_1 from symbol table or dope vector

• Structs

• A.f is equivalent to

&A + offset(f)

• Find offset(f) in symbol table for declaration of record

• Strings

• Complicated–depends on language

Friday, September 21, 12

Expressions

• Three semantic actions needed

• eval_binary (processes binary expressions)

• Create AST node with two children, point to AST
nodes created for left and right sides

• eval_unary (processes unary expressions)

• Create AST node with one child

• process_op (determines type of operation)

• Store operator in AST node

Friday, September 21, 12

Expressions example
• x + y + 5

Friday, September 21, 12

Expressions example
• x + y + 5

binary_op

operator: +

identifier

"x"

identifier

"y"

binary_op

operator: +

literal

"5"

Friday, September 21, 12

binary_op

operator: +

identifier

"x"

identifier

"y"

binary_op

operator: +

literal

"5"

Expressions example
• x + y + 5

Friday, September 21, 12

binary_op

operator: +

identifier

"x"

identifier

"y"

binary_op

operator: +

literal

"5"

Expressions example
• x + y + 5

binary_op

operator: +

identifier

"x"

identifier

"y"

binary_op

operator: +

literal

"5"

Friday, September 21, 12

binary_op

operator: +

identifier

"x"

identifier

"y"

binary_op

operator: +

literal

"5"

Expressions example
• x + y + 5

binary_op

operator: +

identifier

"x"

identifier

"y"

binary_op

operator: +

literal

"5"

binary_op

operator: +

identifier

"x"

identifier

"y"

binary_op

operator: +

literal

"5"

Friday, September 21, 12

binary_op

operator: +

identifier

"x"

identifier

"y"

binary_op

operator: +

literal

"5"

Expressions example
• x + y + 5

binary_op

operator: +

identifier

"x"

identifier

"y"

binary_op

operator: +

literal

"5"

binary_op

operator: +

identifier

"x"

identifier

"y"

binary_op

operator: +

literal

"5"

binary_op

operator: +

identifier

"x"

identifier

"y"

binary_op

operator: +

literal

"5"

Friday, September 21, 12

Generating three-address code

• For project, will need to generate three-address code

• op A, B, C //C = A op B

• Can do this directly or after building AST

Friday, September 21, 12

Generating code from an AST

• Do a post-order walk of AST to generate code, pass generated code up

• Important things to note:

• A node generates code for its children before generating code for
itself

• Data object can contain code or other information

• Code generation is context free

• What does this mean?

data_object generate_code() {
data_object lcode = left.generate_code();
data_object rcode = right.generate_code();
return generate_self(lcode, rcode);

}

Friday, September 21, 12

Generating code directly

• Generating code directly using semantic routines is very
similar to generating code from the AST

• Why?

• Because post-order traversal is essentially what happens
when you evaluate semantic actions as you pop them off
stack

• LL parser: evaluate left child before right child

• LR parser: evaluate right child before left child

• AST nodes are just semantic records

Friday, September 21, 12

Data objects

• Records various important info

• The temporary storing the result of the current
expression

• Flags describing value in temporary

• Constant, L-value, R-value

• Code for expression

Friday, September 21, 12

L-values vs. R-values
• L-values: addresses which can be stored to or loaded from

• R-values: data (often loaded from addresses)

• Expressions operate on R-values

• Assignment statements:

L-value := R-value

• Consider the statement a := a

• the a on LHS refers to the memory location referred to by a
and we store to that location

• the a on RHS refers to data stored in memory location
referred to by a so we will load from that location to produce
the R-value

Friday, September 21, 12

Temporaries

• Can be thought of as an unlimited pool of registers (with
memory to be allocated at a later time)

• Need to declare them like variables

• Name should be something that cannot appear in the
program (e.g., use illegal character as prefix)

• Memory must be allocated if address of temporary can be
taken (e.g. a := &b)

• Temporaries can hold either L-values or R-values

Friday, September 21, 12

Simple cases

• Generating code for constants/literals

• Store constant in temporary

• Optional: pass up flag specifying this is a constant

• Generating code for identifiers

• Generated code depends on whether identifier is used
as L-value or R-value

• Do we load from it? Or store to it?

• One solution: just pass variable up to next level

• Set flag specifying this is an L-value

Friday, September 21, 12

Generating code for expressions
• Create a new temporary for result of expression

• Examine data-objects from subtrees

• If temporaries are L-values, load data from them into new
temporaries

• Generate code to perform operation

• If temporaries are constant, can perform operation immediately

• No need to perform code generation!

• Store result in new temporary

• Is this an L-value or an R-value?

• Return code for entire expression

Friday, September 21, 12

Generating code for assignment
• Store value of temporary from RHS into address specified by

temporary from LHS

• Why does this work?

• Because temporary for LHS holds an address

• If LHS is an identifier, we just stored the address of it in
temporary

• If LHS is complex expression

int *p = &x

*(p + 1) = 7;

it still holds an address, even though the address was
computed by an expression

Friday, September 21, 12

