Semantic actions

• Semantic actions are routines called as productions (or parts of productions) are recognized
• Actions work together to build up intermediate representations
 \(<\text{if-stmt}> \rightarrow \text{IF } <\text{expr}> \#\text{startif} \text{ THEN } <\text{stmts}> \text{ END } \#\text{endif}\)
• Semantic action for \#\text{startif} needs to pass a semantic record to \#\text{endif}
• For LL parsers, semantic actions work easily, because they are predictive
• For LR parsers, do not know which production is used until reduce step; need to place semantic actions at end of production
 \(<\text{if-stmt}> \rightarrow <\text{begin-if}> \text{ THEN } <\text{stmts}> \text{ END } \#\text{endif}\)
 \(<\text{begin-if}> \rightarrow \text{IF } <\text{expr}> \#\text{startif}\)

Semantic Records

• Data structures produced by semantic actions
• Associated with both non-terminals (code structures) and terminals (tokens/symbols)
• Do not have to exist (e.g., no action associated with “;”)
• Control statements often require multiple actions (see <if-stmt> example on previous slide)
• Typically: semantic records are produced by actions associated with terminals, and are passed to actions associated with non-terminals
• Standard organization: semantic stack

Example of semantic stack

• Consider following grammar:
 \(\text{assign} \rightarrow \text{ID} := \text{expr}\)
 \(\text{expr} \rightarrow \text{term addop term}\)
 \(\text{term} \rightarrow \text{ID} | \text{LIT}\)
 \(\text{addop} \rightarrow + | –\)
• And now annotated with semantic actions:
 \(\text{assign} \rightarrow \text{ID} \#\text{process_id} := \text{expr} \#\text{gen_assign}\)
 \(\text{expr} \rightarrow \text{term addop term} \#\text{gen_infix}\)
 \(\text{term} \rightarrow \text{ID} \#\text{process_id} | \text{LIT} \#\text{process_lit}\)
 \(\text{addop} \rightarrow + \#\text{process_p} | – \#\text{process_m}\)

Example of semantic stack

• Consider \(a := b + 1;\)
• Sequence of semantic actions invoked:
 \(\text{process_id, process_id, process_op, process_lit, gen_infix, gen_assign}\)

How do we manipulate stack?

• Action-controlled: actions directly manipulate stack (call push and pop)
• Parser-controlled: parser automatically manipulates stack
LR-parser controlled

- Shift operations push semantic records onto stack (describing the token)
- Reduce operations pop semantic records associated with symbols off stack, replace with semantic record associated with production
- Action routines do not see stack. Can refer to popped off records using handles
 - e.g., in yacc/bison, use $1, $2 etc. to refer to popped off records

LL-controlled

- Parse stack contains predicted productions, not matched productions
- Push empty semantic records onto stack when production is predicted
- Fill in records as symbols are matched
- When non-terminal is matched, pop off records associated with RHS, use to fill in the record associated with LHS (leave LHS record on stack)

Overview of declarations

- Symbol tables
- Action routines for simple declarations
- Action routines for advanced features
 - Constants
 - Enumerations
 - Arrays
 - Structs
 - Pointers

Symbol Tables

- Table of declarations, associated with each scope
- One entry for each variable declared
 - Store declaration attributes (e.g., name and type) – will discuss this in a few slides
- Table must be dynamic (why?)
- Possible implementations
 - Linear list (easy to implement, only good for small programs)
 - Binary search trees (better for large programs, but can still be slow)
 - Hash tables (best solution)
- BSTs and Hash tables can be difficult to implement, but languages like C++ and Java provide implementations for you

Managing symbol tables

- Maintain list of all symbol tables
- Maintain stack marking “current” symbol table
- Whenever you see a program block that allows declarations, create a new symbol table
 - Push onto stack as “current” symbol table
- When you see declaration, add to current symbol table
- When you exit a program block, pop current symbol table off stack

Handling declarations

- Declarations of variables, arrays, functions, etc.
- Create entry in symbol table
- Allocate space in activation record
 - Activation record stores information for a particular function call (arguments, return value, local variables, etc.)
 - Need to have space for all of this information
 - Activation record stored on program stack
- We will discuss these in more detail when we get to functions
Simple declarations

- Declarations of simple types
  ```
  INT x;
  FLOAT f;
  ```
- Semantic action should
 - Get the type and name of identifier
 - Check to see if identifier is already in the symbol table
 - If it isn't, add it, if it is, error

Simple declarations (cont.)

- How do we get the type and name of an identifier?
  ```
  var_decl -> var_type id; #decl_id
  var_type -> INT #int_type | FLOAT #float_type
  id -> IDENTIFIER #id
  ```
 - Where do we put the semantic actions?
 - When we process #int_type and #id, can store the type and identifier name and pass them to #decl_id
 - When creating activation record, allocate space based on type (why?)

Simple declarations (cont.)

Constants and ranges

- Constants
 - Symbol table needs a field to store constant value
 - In general, the constant value may not be known until runtime (static final int i = 2 + j;)
 - At compile time, we create code that allows the initialization expression to assign to the variable, then evaluate the expression at run-time
 - Range types (like in Pascal)
    ```
    Type alpha = 'a' .. 'z'
    ```
 - Need an entry for the type as well as the upper and lower bounds

Enums

- Enumeration types: enum days {mon, tue, wed, thu, fri, sat, sun};
 - Create an entry for the enumeration type itself, and an entry for each member of the enumeration
 - Entries are usually linked
 - Processing enum declaration sets the “enum counter” to lower bound (usually 0)
 - Each new member seen is assigned the next value and the counter is incremented
 - In some languages (e.g., C), enum members may be assigned particular values. Should ensure that enum value isn’t reused

Arrays

- Fixed size (static) arrays
  ```
  int A[10];
  ```
 - Store type and length of array
 - When creating activation record, allocate enough space on stack for array
 - What about variable size arrays?
  ```
  int A[M][N]
  ```
 - Store information for a dope vector
 - Tracks dimensionality of array, size, location
 - Activation record stores dope vector
 - At runtime, allocate array at top of stack, fill in dope vector
Structs/classes

- Can have variables/methods declared inside, need extra symbol table
- Need to store visibility of members
- Complication: can create multiple instances of a struct or class!
- Need to store offset of each member in struct

Pointers

- Need to store type information and length of what it points to

- Needed for pointer arithmetic
  ```c
  int * a = &y;
  z = *(a + 1);
  ```
- Need to worry about forward declarations
  ```c
  Class Foo;
  Foo * head;
  Class Foo { ... };
  ```

Abstract syntax trees

- Tree representing structure of the program
- Built by semantic actions
- Some compilers skip this
- AST nodes
 - Represent program construct
 - Store important information about construct

ASTs for References

Referencing identifiers

- Different behavior if identifier is used in a declaration vs. expression
- If used in declaration, treat as before
- If in expression, need to:
 - Check if it is symbol table
 - Create new AST node with pointer to symbol table entry
 - Note: may want to directly store type information in AST (or could look up in symbol table each time)

Referencing Literals

- What about if we see a literal?
  ```
  primary -> INTLITERAL | FLOATLITERAL
  ```
- Create AST node for literal
- Store string representation of literal
  ```
  "155", "2.45" etc.
  ```
- At some point, this will be converted into actual representation of literal
  ```
  For integers, may want to convert early (to do constant folding)
  ```
  ```
  For floats, may want to wait (for compilation to different machines). Why?
More complex references

- Arrays
  - A[i][j] is equivalent to
    \[ A + i*\text{dim}_1 + j \]
  - Extract \( \text{dim}_1 \) from symbol table or dope vector

- Structs
  - A.f is equivalent to
    \&A + \text{offset}(f)
  - Find \( \text{offset}(f) \) in symbol table for declaration of record

- Strings
  - Complicated—depends on language

Expressions

- Three semantic actions needed
  - eval_binary (processes binary expressions)
    - Create AST node with two children, point to AST nodes created for left and right sides
  - eval_unary (processes unary expressions)
    - Create AST node with one child
  - process_op (determines type of operation)
    - Store operator in AST node

Expressions example

- \( x + y + 5 \)

Expressions example

- \( x + y + 5 \)
Expressions example

- \(x + y + 5\)

Generating three-address code

- For project, will need to generate three-address code
- \(op \ A, B, C //C = A \ op \ B\)
- Can do this directly or after building AST

Generating code from an AST

- Do a post-order walk of AST to generate code, pass generated code up
  ```
 data_object generate_code() {
 data_object lcode = left.generate_code();
 data_object rcode = right.generate_code();
 return generate_self(lcode, rcode);
 }
  ```

  - Important things to note:
    - A node generates code for its children before generating code for itself
    - Data object can contain code or other information
    - Code generation is context free
    - What does this mean?

Generating code directly

- Generating code directly using semantic routines is very similar to generating code from the AST
- Why?
- Because post-order traversal is essentially what happens when you evaluate semantic actions as you pop them off stack
- LL parser: evaluate left child before right child
- LR parser: evaluate right child before left child
- AST nodes are just semantic records

Data objects

- Records various important info
  - The temporary storing the result of the current expression
  - Flags describing value in temporary
    - Constant, L-value, R-value
  - Code for expression
L-values vs. R-values

- L-values: addresses which can be stored to or loaded from
- R-values: data (often loaded from addresses)
- Expressions operate on R-values
- Assignment statements:
  \[ L-value := R-value \]
- Consider the statement \( a := a \)
  - the \( a \) on LHS refers to the memory location referred to by \( a \) and we store to that location
  - the \( a \) on RHS refers to data stored in memory location referred to by \( a \) so we will load from that location to produce the R-value

Temporaries

- Can be thought of as an unlimited pool of registers (with memory to be allocated at a later time)
- Need to declare them like variables
- Name should be something that cannot appear in the program (e.g., use illegal character as prefix)
- Memory must be allocated if address of temporary can be taken (e.g., \( a := &b \))
- Temporaries can hold either L-values or R-values

Simple cases

- Generating code for constants/literals
  - Store constant in temporary
  - Optional: pass up flag specifying this is a constant
- Generating code for identifiers
  - Generated code depends on whether identifier is used as L-value or R-value
  - Do we load from it? Or store to it?
  - One solution: just pass variable up to next level
    - Set flag specifying this is an L-value

Generating code for expressions

- Create a new temporary for result of expression
- Examine data-objects from subtrees
  - If temporaries are L-values, load data from them into new temporaries
    - Generate code to perform operation
  - If temporaries are constant, can perform operation immediately
    - No need to perform code generation!
- Store result in new temporary
  - Is this an L-value or an R-value?
  - Return code for entire expression

Generating code for assignment

- Store value of temporary from RHS into address specified by temporary from LHS
  - Why does this work?
  - Because temporary for LHS holds an address
    - If LHS is an identifier, we just stored the address of it in temporary
    - If LHS is complex expression
      \[
      \text{int } *p = &x \\
      *(p + 1) = 7;
      \]
      - it still holds an address, even though the address was computed by an expression