Parsers

Thursday, August 30, 12

Agenda

• Terminology
• LL(1) Parsers
• Overview of LR Parsing

Terminology

• Grammar $G = (V_t, V_n, S, P)$
• V_t is the set of terminals
• V_n is the set of non-terminals
• S is the start symbol
• P is the set of productions
 • Each production takes the form $V_n \rightarrow \lambda$ | $(V_n | V_t)^+$
 • Grammar is context-free (why?)
• A simple grammar:
 $G = (\{a, b\}, \{S, A, B\}, \{S \rightarrow A B \$, $A \rightarrow A a$, $A \rightarrow a$, $B \rightarrow B b$, $B \rightarrow b\}, S)$

Generating strings

• Given a start rule, productions tell us how to rewrite a non-terminal into a different set of symbols
• By convention, first production applied has the start symbol on the left, and there is only one such production

To derive the string "a a b b b" we can do the following rewrites:

$S \Rightarrow A B \$ $\Rightarrow A a B \$ $\Rightarrow a a B b \$ $\Rightarrow a a B b b \$ $\Rightarrow a a B b b b \$

Thursday, August 30, 12

Terminology

• V is the vocabulary of a grammar, consisting of terminal (V_t) and non-terminal (V_n) symbols
• For our sample grammar
 • $V_n = \{S, A, B\}$
 • Non-terminals are symbols on the LHS of a production
 • Non-terminals are constructs in the language that are recognized during parsing
• $V_t = \{a, b\}$
 • Terminals are the tokens recognized by the scanner
 • They correspond to symbols in the text of the program
Terminology

- Strings are composed of symbols
 - A A a a B b b A a is a string
 - We will use Greek letters to represent strings composed of both terminals and non-terminals
- \(L(G) \) is the language produced by the grammar \(G \)
 - All strings consisting of only terminals that can be produced by \(G \)
 - In our example, \(L(G) = a+b+\$ \)
 - All regular expressions can be expressed as grammars for context-free languages, but not vice-versa
 - Consider: \(a^{i} b^{i} \$ \) (what is the grammar for this?)

Parse trees

- Tree which shows how a string was produced by a language
 - Interior nodes of tree: non-terminals
 - Children: the terminals and non-terminals generated by applying a production rule
 - Leaf nodes: terminals

Leftmost derivation

- Rewriting of a given string starts with the leftmost symbol
- Exercise: do a leftmost derivation of the input program \(F(V + V) \)

using the following grammar:

\[
\begin{align*}
E &\rightarrow \text{Prefix} (E) \\
E &\rightarrow V \text{ Tail} \\
\text{Prefix} &\rightarrow F \\
\text{Prefix} &\rightarrow \lambda \\
\text{Tail} &\rightarrow + E \\
\text{Tail} &\rightarrow \lambda
\end{align*}
\]

- What does the parse tree look like?

Rightmost derivation

- Rewrite using the rightmost non-terminal, instead of the left
- What is the rightmost derivation of this string? \(F(V + V) \)

using the following grammar:

\[
\begin{align*}
E &\rightarrow \text{Prefix} (E) \\
E &\rightarrow V \text{ Tail} \\
\text{Prefix} &\rightarrow F \\
\text{Prefix} &\rightarrow \lambda \\
\text{Tail} &\rightarrow + E \\
\text{Tail} &\rightarrow \lambda
\end{align*}
\]

Simple conversions

\[
\begin{align*}
A &\rightarrow B \mid C \\
D &\rightarrow E \{F\}
\end{align*}
\]

Top-down vs. Bottom-up parsers

- Top-down parsers expand the parse tree in pre-order
 - Identify parent nodes before the children
- Bottom-up parsers expand the parse tree in post-order
 - Identify children before the parents
- Notation:
 - \(\text{LL}(1) \): Top-down derivation with 1 symbol lookahead
 - \(\text{LL}(k) \): Top-down derivation with k symbols lookahead
 - \(\text{LR}(1) \): Bottom-up derivation with 1 symbol lookahead
What is parsing

- Parsing is recognizing members in a language specified/defined/generated by a grammar

- When a construct (corresponding to a production in a grammar) is recognized, a typical parser will take some action

 - In a compiler, this action generates an intermediate representation of the program construct
 - In an interpreter, this action might be to perform the action specified by the construct. Thus, if \(a+b \) is recognized, the value of \(a \) and \(b \) would be added and placed in a temporary variable.

Top-down parsing

- Idea: we know sentence has to start with initial symbol

- Build up partial derivations by predicting what rules are used to expand non-terminals

 - Often called predictive parsers

 - If partial derivation has terminal characters, match them from the input stream

A simple example

\[
S \rightarrow A \ B \ c \ \$
\]

\[
A \rightarrow x \ a \ A
\]

\[
A \rightarrow y \ A
\]

\[
A \rightarrow c
\]

\[
B \rightarrow b
\]

\[
B \rightarrow \lambda
\]

\[
A \rightarrow y \ a \ A
\]

\[
A \rightarrow c
\]

\[
B \rightarrow b
\]

\[
B \rightarrow \lambda
\]

\[
A \rightarrow y \ A
\]

\[
A \rightarrow c
\]

\[
B \rightarrow b
\]

\[
B \rightarrow \lambda
\]

\[
A \rightarrow y \ a \ A
\]

\[
A \rightarrow c
\]

\[
B \rightarrow b
\]

\[
B \rightarrow \lambda
\]

A sentence in the grammar:

\[
x \ a \ c \ c \$
\]

Current derivation:

\[
S$
\]
A simple example

\[S \rightarrow A B c \$
\]

Choose based on first set of rules

\[
\begin{align*}
A &\rightarrow x a A \\
A &\rightarrow y a A \\
A &\rightarrow c \\
B &\rightarrow b \\
B &\rightarrow \lambda
\end{align*}
\]

A sentence in the grammar:

\[x a c c \$
\]

Current derivation: \(x a A B c \$

Predict rule based on next token

Thursday, August 30, 12

A simple example

\[S \rightarrow A B c \$
\]

Choose based on first set of rules

\[
\begin{align*}
A &\rightarrow x a A \\
A &\rightarrow y a A \\
A &\rightarrow c \\
B &\rightarrow b \\
B &\rightarrow \lambda
\end{align*}
\]

A sentence in the grammar:

\[x a c c \$
\]

Current derivation: \(x a A B c \$

Match token

Thursday, August 30, 12

A simple example

\[S \rightarrow A B c \$
\]

Current derivation: \(x a A B c \$

Match token

Thursday, August 30, 12

A simple example

\[S \rightarrow A B c \$
\]

Choose based on first set of rules

\[
\begin{align*}
A &\rightarrow x a A \\
A &\rightarrow y a A \\
A &\rightarrow c \\
B &\rightarrow b \\
B &\rightarrow \lambda
\end{align*}
\]

A sentence in the grammar:

\[x a c c \$
\]

Current derivation: \(x a c B c \$

Predict rule based on next token

Thursday, August 30, 12

A simple example

\[S \rightarrow A B c \$
\]

Choose based on follow set

\[
\begin{align*}
A &\rightarrow x a A \\
A &\rightarrow y a A \\
A &\rightarrow c \\
B &\rightarrow b \\
B &\rightarrow \lambda
\end{align*}
\]

A sentence in the grammar:

\[x a c c \$
\]

Current derivation: \(x a c \lambda c \$

Predict rule based on next token

Thursday, August 30, 12
A simple example

\[S \rightarrow A \, B \, c \,$
\[A \rightarrow x \, a \, A \]
\[A \rightarrow y \, a \, A \]
\[A \rightarrow c \]
\[B \rightarrow b \]
\[B \rightarrow \lambda \]

A sentence in the grammar:
\[x \, a \, c \, c \,$

Current derivation: \[x \, a \, c \, c \,$

Match token

First and follow sets

- First(\(\alpha\)): the set of terminals that begin all strings that can be derived from \(\alpha\)
- First(\(A\)) = \{x, y\}
- First(\(xaA\)) = \{x\}
- First(\(AB\)) = \{x, y, b\}
- Follow(\(A\)): the set of terminals that can appear immediately after \(A\) in some partial derivation
- Follow(\(A\)) = \{b\}

Computing first sets

- Terminal: First(\(a\)) = \{a\}
- Non-terminal: First(\(A\))
 - Look at all productions for \(A\)
 \[A \rightarrow X_1 X_2 \ldots X_k \]
 - First(\(A\)) \supset (First(\(X_1\)) - \(\lambda\))
 - If \(\lambda\) \in First(\(X_1\)), First(\(A\)) \supset (First(\(X_2\)) - \(\lambda\))
 - If \(\lambda\) is in First(\(X_i\)) for all i, then \(\lambda\) \in First(\(A\))
- Computing First(\(\alpha\)): similar procedure to computing First(\(A\))

Exercise

- What are the first sets for all the non-terminals in following grammar:

\[S \rightarrow A \, B \,$
\[A \rightarrow x \, a \, A \]
\[A \rightarrow y \, a \, A \]
\[A \rightarrow \lambda \]
\[B \rightarrow b \]
\[B \rightarrow A \]
Computing follow sets

- Follow(S) = {}
- To compute Follow(A):
 1. Find productions which have A on rhs. Three rules:
 1. \(X \rightarrow \alpha A \beta: \text{Follow}(A) \supseteq \text{First}(\beta) - \lambda\)
 2. \(X \rightarrow \alpha A \beta: \text{If } \lambda \in \text{First}(\beta), \text{Follow}(A) \supseteq \text{Follow}(X)\)
 3. \(X \rightarrow \alpha A: \text{Follow}(A) \supseteq \text{Follow}(X)\)
- Note: Follow(X) never has \(\lambda\) in it.

Exercise

- What are the follow sets for:

 \[\begin{align*}
 S \rightarrow & \ A \ B \ \$
 A \rightarrow & \ x \ a \ A \\
 A \rightarrow & \ y \ a \ A \\
 A \rightarrow & \ \lambda \\
 B \rightarrow & \ b \\
 B \rightarrow & \ A \\
 \end{align*} \]

Towards parser generators

- Key problem: as we read the source program, we need to decide what productions to use
- Step 1: find the tokens that can tell which production P (of the form \(A \rightarrow X_1 X_2 \ldots X_m\)) applies

 \[
 \text{Predict}(P) = \begin{cases}
 \text{First}(X_1 \ldots X_m) & \text{if } \lambda \notin \text{First}(X_1 \ldots X_m) \\
 \text{(First}(X_1 \ldots X_m) - \lambda) \cup \text{Follow}(A) & \text{otherwise}
 \end{cases}
 \]
- If next token is in Predict(P), then we should choose this production

Parse tables

- Step 2: build a parse table
 - Given some non-terminal \(V_i\) (the non-terminal we are currently processing) and a terminal \(V_t\) (the lookahead symbol), the parse table tells us which production \(P\) to use (or that we have an error)
 - More formally:
 \[T: V_n \times V_t \rightarrow P \cup \{\text{Error}\} \]

Building the parse table

- Start: \(T[A][t] = \text{error}\)
 - foreach A:
 - foreach P with A on its lhs:
 - foreach t in Predict(P):
 - \(T[A][t] = P\)
 - Exercise: build parse table for our toy grammar

Stack-based parser for LL(1)

- Given the parse table, a stack-based algorithm is much simpler to generate than a recursive descent parser
- Basic algorithm:
 1. Push the RHS of a production onto the stack
 2. Pop a symbol, if it is a terminal, match it
 3. If it is a non-terminal, take its production according to the parse table and go to 1
- Algorithm on page 121
- Note: always start with start state
An example

• How would a stack-based parser parse:

\[x\ a\ y\ a\ b\]
An example

• How would a stack-based parser parse:

 x a y a b

<table>
<thead>
<tr>
<th>Parse stack</th>
<th>Remaining input</th>
<th>Parser action</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>x a y a b $</td>
<td>predict 1</td>
</tr>
<tr>
<td>A B $</td>
<td>x a y a b $</td>
<td>predict 2</td>
</tr>
<tr>
<td>x a A B $</td>
<td>x a y a b $</td>
<td>match(x)</td>
</tr>
<tr>
<td>a A B $</td>
<td>y a b $</td>
<td>match(a)</td>
</tr>
<tr>
<td>A B $</td>
<td>y a b $</td>
<td>predict 3</td>
</tr>
<tr>
<td>y a A B $</td>
<td>y a b $</td>
<td>match(y)</td>
</tr>
<tr>
<td>A B $</td>
<td>a b $</td>
<td>match(a)</td>
</tr>
<tr>
<td>B $</td>
<td>b $</td>
<td>predict 4</td>
</tr>
<tr>
<td>B $</td>
<td>b $</td>
<td>predict 5</td>
</tr>
<tr>
<td>b $</td>
<td>b $</td>
<td>match(b)</td>
</tr>
<tr>
<td>$</td>
<td>$</td>
<td>Done!</td>
</tr>
</tbody>
</table>

1. $ \rightarrow A B $
2. A $ \rightarrow x A $
3. A $ \rightarrow y A $
4. A $ \rightarrow \lambda $
5. B $ \rightarrow b $
Dealing with semantic actions

- We can annotate a grammar with action symbols
- Tell the parser to invoke a semantic action routine
- Can simply push action symbols onto stack as well
- When popped, the semantic action routine is called
- Routine manipulates semantic records on a stack
- Can generate new records (e.g., to store variable info)
- Can generate code using existing records
- Example: semantic actions for $x = a + 3$

Non-LL(1) grammars

- Not all grammars are LL(1)!
- Consider

 \[\text{<stmt>} \rightarrow \text{if <expr> then <stmt list> endif} \]

 \[\text{<stmt>} \rightarrow \text{if <expr> then <stmt list> else <stmt list> endif} \]
- This is not LL(1) (why?)
- We can turn this into

 \[\text{<stmt>} \rightarrow \text{if <expr> then <stmt list> <if suffix>} \]

 \[\text{<if suffix>} \rightarrow \text{endif} \]

 \[\text{<if suffix>} \rightarrow \text{else <stmt list> endif} \]

Left recursion

- Left recursion is a problem for LL(1) parsers
- LHS is also the first symbol of the RHS
- Consider:

 \[E \rightarrow E + T \]

 \[E \rightarrow T \]
- What would happen with the stack-based algorithm?

Removing left recursion

\[E \rightarrow E + T \]

\[E \rightarrow T \]

\[E \rightarrow E_1 E_{tail} \]

\[E_1 \rightarrow T \]

\[E_{tail} \rightarrow + T E_{tail} \]

\[E_{tail} \rightarrow \lambda \]

LL(k) parsers

- Can look ahead more than one symbol at a time
- k-symbol lookahead requires extending first and follow sets
- 2-symbol lookahead can distinguish between more rules:

 \[A \rightarrow ax | ay \]
- More lookahead leads to more powerful parsers
- What are the downsides?

Are all grammars LL(k)?

- No! Consider the following grammar:

 \[S \rightarrow E \]

 \[E \rightarrow (E + E) \]

 \[E \rightarrow (E - E) \]

 \[E \rightarrow x \]
- When parsing E, how do we know whether to use rule 2 or 3?
- Potentially unbounded number of characters before the distinguishing ‘+’ or ‘-’ is found
- No amount of lookahead will help!
In real languages?
- Consider the if-then-else problem
- `if x then y else z`
- Problem: else is optional
- `if a then if b then c else d`
- Which if does the else belong to?
- This is analogous to a “bracket language”: `[[i]] (i ≥ j)

\[
\begin{align*}
S & \rightarrow \{ S \} \\
S & \rightarrow \lambda \\
C & \rightarrow \} \\
C & \rightarrow \lambda \\
\end{align*}
\]

(\{ can be parsed: S\{C or S\{S\C

This grammar is still not LL(1)
(or LL(k) for any k)

Solving the if-then-else problem
- The ambiguity exists at the language level. To fix, we need to define the semantics properly
- “}” matches nearest unmatched “{”
- This is the rule C uses for if-then-else
- What if we try this?

\[
\begin{align*}
S & \rightarrow \{ S \\
S & \rightarrow S1 \\
S1 & \rightarrow [S1] \\
S1 & \rightarrow \lambda \\
\end{align*}
\]

Two possible fixes
- If there is an ambiguity, prioritize one production over another
- e.g., if C is on the stack, always match “}” before matching “\(\lambda\)”

\[
\begin{align*}
S & \rightarrow \{ S \\
S & \rightarrow \lambda \\
C & \rightarrow \} \\
C & \rightarrow \lambda \\
\end{align*}
\]

Another option: change the language!
- e.g., all if-statements need to be closed with an endif

\[
\begin{align*}
S & \rightarrow if S E \\
S & \rightarrow other \\
E & \rightarrow else S endif \\
E & \rightarrow endif \\
\end{align*}
\]

Parsing if-then-else
- What if we don’t want to change the language?
- C does not require { } to delimit single-statement blocks
- To parse if-then-else, we need to be able to look ahead at the entire rhs of a production before deciding which production to use
- In other words, we need to determine how many “}” to match before we start matching “\(\}’s”
- LR parsers can do this!

LR Parsers
- Parser which does a Left-to-right, Right-most derivation
- Rather than parse top-down, like LL parsers do, parse bottom-up, starting from leaves
- Basic idea: put tokens on a stack until an entire production is found
- Issues:
 - Recognizing the endpoint of a production
 - Finding the length of a production (RHS)
 - Finding the corresponding nonterminal (the LHS of the production)

LR Parsers
- Basic idea:
 - shift tokens onto the stack. At any step, keep the set of productions that could generate the read-in tokens
 - reduce the RHS of recognized productions to the corresponding non-terminal on the LHS of the production. Replace the RHS tokens on the stack with the LHS non-terminal.
Data structures

- At each state, given the next token,
 - A goto table defines the successor state
 - An action table defines whether to
 - shift – put the next state and token on the stack
 - reduce – an RHS is found; process the production
 - terminate – parsing is complete

Simple example

1. P → S
2. S → x ; S
3. S → e

<table>
<thead>
<tr>
<th>State</th>
<th>Symbol</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>x ; e</td>
<td>Shift</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>Shift</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>Shift</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>Reduce 3</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Reduce 2</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Accept</td>
</tr>
</tbody>
</table>

Parsing using an LR(0) parser

- Basic idea: parser keeps track, simultaneously, of all possible productions that could be matched given what it’s seen so far. When it sees a full production, match it.
- Maintain a parse stack that tells you what state you’re in
 - Start in state 0
- In each state, look up in action table whether to:
 - shift: consume a token off the input; look for next state in goto table; push next state onto stack
 - reduce: match a production; pop off as many symbols from state stack as seen in production; look up where to go according to non-terminal we just matched; push next state onto stack
 - accept: terminate parse

Example

- Parse "x ; x ; e"

<table>
<thead>
<tr>
<th>Step</th>
<th>Parse Stack</th>
<th>Remaining Input</th>
<th>Parser Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>x ; x ; e</td>
<td>Shift 1</td>
</tr>
<tr>
<td>2</td>
<td>0 1</td>
<td></td>
<td>Shift 2</td>
</tr>
<tr>
<td>3</td>
<td>0 1 2</td>
<td>x ; e</td>
<td>Shift 1</td>
</tr>
<tr>
<td>4</td>
<td>0 1 2 1</td>
<td></td>
<td>Shift 2</td>
</tr>
<tr>
<td>5</td>
<td>0 1 2 1 2</td>
<td>e</td>
<td>Shift 3</td>
</tr>
<tr>
<td>6</td>
<td>0 1 2 1 2 3</td>
<td></td>
<td>Reduce 3 (goto 4)</td>
</tr>
<tr>
<td>7</td>
<td>0 1 2 1 2 4</td>
<td></td>
<td>Reduce 2 (goto 4)</td>
</tr>
<tr>
<td>8</td>
<td>0 1 2 4</td>
<td></td>
<td>Reduce 2 (goto 5)</td>
</tr>
<tr>
<td>9</td>
<td>0 5</td>
<td></td>
<td>Accept</td>
</tr>
</tbody>
</table>

LR(k) parsers

- LR(0) parsers
 - No lookahead
 - Predict which action to take by looking only at the symbols currently on the stack
- LR(k) parsers
 - Can look ahead k symbols
 - Most powerful class of deterministic bottom-up parsers
 - LR(1) and variants are the most common parsers

Terminology for LR parsers

- Configuration: a production augmented with a "•"
 - A → X₁ ... Xᵢ • Xᵢ₊₁ ... Xₗ
 - The "•" marks the point to which the production has been recognized. In this case, we have recognized X₁ ... Xᵢ
- Configuration set: all the configurations that can apply at a given point during the parse:
 - A → B • CD
 - A → B • GH
 - T → B • Z
- Idea: every configuration in a configuration set is a production that we could be in the process of matching
Configuration closure set

- Include all the configurations necessary to recognize the next symbol after the •
- For each configuration in set:
 - If next symbol is terminal, no new configuration added
 - If next symbol is non-terminal X, for each production of the form X → α, add configuration X → •α

```
S → E $  E → E + T | T
T → ID | (E)
```

Successor configuration set

- Starting with the initial configuration set
 s0 = closure0(§)

An LR(0) parser will find the successor given the next symbol X
- X can be either a terminal (the next token from the scanner) or a non-terminal (the result of applying a reduction)

Determining the successor s' = go_to0(s, X):
- For each configuration in s of the form A → α • X γ add A → β • X γ to t
- s' = closure0(t)

CFSM

- CFSM = Characteristic Finite State Machine
- Nodes are configuration sets (starting from s0)
- Arcs are go_to relationships

Building the goto table

- We can just read this off from the CFSM

<table>
<thead>
<tr>
<th>State</th>
<th>Symbol</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>S′ → S $</td>
<td>ID</td>
<td>1</td>
<td>S</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>S → S $</td>
<td>S</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>S → ID</td>
<td>0</td>
<td>S</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S → S S</td>
<td>1</td>
<td>2</td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S → ID</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S → S $</td>
<td>S</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Building the action table

- Given the configuration set s:
 - We shift if the next token matches a terminal after the • in some configuration
 A → α • β ∈ s and a ∈ V, else error
 - We reduce production if the • is at the end of a production
 B → α • ∈ s where production P is B → α
 - Extra actions:
 - shift if goto table transitions between states on a non-terminal
 - accept if we have matched the goal production

<table>
<thead>
<tr>
<th>State</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shift</td>
<td>0</td>
<td>Reduce 2</td>
<td>Shift</td>
<td>Accept</td>
</tr>
</tbody>
</table>
Conflicts in action table

- For LR(0) grammars, the action table entries are unique: from each state, can only shift or reduce
- But other grammars may have conflicts
 - Reduce/reduce conflicts: multiple reductions possible from the given configuration
 - Shift/reduce conflicts: we can either shift or reduce from the given configuration

Shift/reduce conflict

- Consider the following grammar:
 \[
 S \rightarrow A \ y \\
 A \rightarrow x \mid xx
 \]
- This leads to the following configuration set (after shifting one "x"):
 \[
 A \rightarrow x \ast x \\
 A \rightarrow x \ast
 \]
- Can shift or reduce here

Shift/reduce example (2)

- Consider the following grammar:
 \[
 S \rightarrow A \ y \\
 A \rightarrow \lambda \mid x
 \]
- This leads to the following initial configuration set:
 \[
 S \rightarrow \ast A \ y \\
 A \rightarrow \ast x \\
 A \rightarrow \lambda \ast
 \]
- Can shift or reduce here

Lookahead

- Can resolve reduce/reduce conflicts and shift/reduce conflicts by employing lookahead
 - Looking ahead one (or more) tokens allows us to determine whether to shift or reduce
 - (cf how we resolved ambiguity in LL(1) parsers by looking ahead one token)

Semantic actions

- Recall in LL parsers, we could integrate the semantic actions with the parser
 - Why? Because the parser was predictive
 - Why doesn’t that work for LR parsers?
 - Don’t know which production is matched until parser reduces
 - For LR parsers, we put semantic actions at the end of productions
 - May have to rewrite grammar to support all necessary semantic actions

Parsers with lookahead

- Adding lookahead creates an LR(1) parser
 - Built using similar techniques as LR(0) parsers, but uses lookahead to distinguish states
 - LR(1) machines can be much larger than LR(0) machines, but resolve many shift/reduce and reduce/reduce conflicts
 - Other types of LR parsers are SLR(1) and LALR(1)
 - Differ in how they resolve ambiguities
 - yacc and bison produce LALR(1) parsers
LR(1) parsing

- Configurations in LR(1) look similar to LR(0), but they are extended to include a lookahead symbol
 \[A \rightarrow X_1 \ldots X_i \cdot X_{i+1} \ldots X_j , l \] (where \(l \in V_t \cup \lambda \))
- If two configurations differ only in their lookahead component, we combine them
 \[A \rightarrow X_1 \ldots X_i \cdot X_{i+1} \ldots X_j , \{ l_1 \ldots l_m \} \]

Building configuration sets

- To close a configuration
 \[B \rightarrow \alpha \cdot A \beta , l \]
- Add all configurations of the form \(A \rightarrow \cdot \gamma , u \) where \(u \in \text{First}(\beta) \)
- Intuition: the lookahead symbol for any configuration is the terminal we expect to see after the configuration has been matched
- The parse could apply the production for \(A \), and the lookahead after we apply the production should match the next token that would be produced by \(B \)

Example

\[
\text{closure}_1 \{ S \rightarrow \cdot E \; $ \} =
\]

\begin{align*}
S & \rightarrow E $ \\
E & \rightarrow E + T \mid \Gamma \\
T & \rightarrow \text{ID} \mid (E)
\end{align*}

Example

\[
\text{closure}_1 \{ S \rightarrow \cdot E \; $ \} =
\]

\begin{align*}
S & \rightarrow \cdot E \; $ \\
S & \rightarrow \cdot E \; + \Gamma \\
E & \rightarrow E + T \mid \Gamma \\
E & \rightarrow \cdot T \mid \Gamma \\
T & \rightarrow \text{ID} \mid (E)
\end{align*}
Building goto and action tables

- The function \(\text{goto}\) (configuration-set, symbol) is analogous to \(\text{goto0}\) (configuration-set, symbol) for LR(0)
- Build goto table in the same way as for LR(0)
- Key difference: the action table.

 \[
 \text{action}[s][x] = \begin{cases}
 \text{reduce} & \text{when } \cdot \text{ is at end of configuration and } x \in \text{lookahead set of configuration} \\
 \text{shift} & \text{when } \cdot \text{ is before } x
 \end{cases}
 \]

 \[
 A \rightarrow \alpha \cdot \{ ... x ... \} \in s
 \]

Action and goto tables

<table>
<thead>
<tr>
<th>Step</th>
<th>Parse Stack</th>
<th>Remaining Input</th>
<th>Parser Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>begin $S ; S$; end $</td>
<td>$</td>
</tr>
<tr>
<td>1</td>
<td>0 1</td>
<td>$S ; S$; end $</td>
<td>$</td>
</tr>
<tr>
<td>2</td>
<td>0 1 5</td>
<td>$S ; S$; end $</td>
<td>$</td>
</tr>
<tr>
<td>3</td>
<td>0 1 5 6</td>
<td>$S ; S$; end $</td>
<td>$</td>
</tr>
<tr>
<td>4</td>
<td>0 1 5 6 5</td>
<td>$S ; S$; end $</td>
<td>$</td>
</tr>
<tr>
<td>5</td>
<td>0 1 5 6 5 6</td>
<td>$S ; S$; end $</td>
<td>$</td>
</tr>
<tr>
<td>6</td>
<td>0 1 5 6 5 6</td>
<td>end $</td>
<td>$</td>
</tr>
<tr>
<td>7</td>
<td>0 1 5 6 5 6</td>
<td>end $</td>
<td>$</td>
</tr>
<tr>
<td>8</td>
<td>0 1 5 6 10</td>
<td>end $</td>
<td>$</td>
</tr>
<tr>
<td>9</td>
<td>0 1 2</td>
<td>end $</td>
<td>$</td>
</tr>
<tr>
<td>10</td>
<td>0 1 2 3</td>
<td>$</td>
<td>$</td>
</tr>
</tbody>
</table>

Problems with LR(1) parsers

- LR(1) parsers are very powerful ...

 - But the table size is much larger than LR(0) — as much as a factor of \(|V_t|\) (why?)

 - Example: Algol 60 (a simple language) includes several thousand states!

 - Storage efficient representations of tables are an important issue

Example

- Consider the simple grammar:

 \[
 \begin{align*}
 \text{<program>} & \rightarrow \text{begin} \quad \text{<stmts>} \quad \text{end} \quad \text{<program>}
 \\
 \text{<stmts>} & \rightarrow \text{<stmts>} \quad \text{<stmts>}
 \\
 \text{<stmts>} & \rightarrow \text{<stmts>} \quad \text{<stmts>}
 \\
 \end{align*}
 \]

Solutions to the size problem

- Different parser schemes

 - SLR (simple LR): build an CFSM for a language, then add lookahead wherever necessary (i.e., add lookahead to resolve shift/reduce conflicts)

 - What should the lookahead symbol be?

 - To decide whether to reduce using production \(A \rightarrow \alpha \cdot \) use Follow(A)

 - LALR: merge LR states in certain cases (we won’t discuss this)