Parsers

Agenda

® Terminology
® LL(l)Parsers

® Overview of LR Parsing

Thursday, August 30, 12

Terminology

e Grammar G = (V, Vs, S, P)
® V.is the set of terminals
® V,is the set of non-terminals
® Sis the start symbol
® Pis the set of productions
® Each production takes the form:Vn, = A | (Va | Vo)+
® Grammar is context-free (why?)
® A simple grammar:

G = ({a,b},{S,ABL{S >AB$,A>AaA—>aB—>BbB—
b}, S)

Thursday, August 30, 12

Terminology

® Productions (rewrite rules) tell us how to derive strings in the language
® Apply productions to rewrite strings into other strings
® We will use the standard BNF form
e P={
S—ABS$
A—Aa
A—a
B—Bb
B—b
}

Thursday, August 30, 12

Terminology

® Vis the vocabulary of a grammar, consisting of terminal (V¢)
and non-terminal (V») symbols

® For our sample grammar
e V,={SAB}
® Non-terminals are symbols on the LHS of a production

® Non-terminals are constructs in the language that are
recognized during parsing

e V.={ab}
® Terminals are the tokens recognized by the scanner

® They correspond to symbols in the text of the program

Thursday, August 30, 12

Thursday, August 30, 12

Generating strings

S—-ABS$ ® Given a start rule, productions tell us
how to rewrite a non-terminal into a

A—Aa different set of symbols

A—a ® By convention, first production
applied has the start symbol on the

B—Bb left, and there is only one such
production

To derive the string*“a a b b b” we can do the following rewrites:

S=AB$=AaB$=aaB$=aaBbs$=
aaBbb$=aabbb$

Thursday, August 30, 12

Terminology

® Strings are composed of symbols
o AAaaBbbAaisastring

® We will use Greek letters to represent strings composed of
both terminals and non-terminals

® [(G) is the language produced by the grammar G

® All strings consisting of only terminals that can be produced
by G

® In our example, L(G) = a+b+$

® All regular expressions can be expressed as grammars for
context-free languages, but not vice-versa

e Consider:a'b' $ (what is the grammar for this?)

Parse trees

® Tree which shows how a
string was produced by a
language

® Interior nodes of tree: non-
terminals

® Children: the terminals
and non-terminals
generated by applying a
production rule

® |eaf nodes: terminals

Thursday, August 30, 12

Leftmost derivation

® Rewriting of a given string starts with the leftmost symbol

® Exercise: do a leftmost derivation of the input program

F(v+V)
using the following grammar:

E — Prefix (E)
E -V Tail
Prefix — F
Prefix — A
Tal — +E
Tail — A

® What does the parse tree look like?

Thursday, August 30, 12

Rightmost derivation

® Rewrite using the rightmost non-terminal, instead of the left

® What is the rightmost derivation of this string?

F(V+V)
E — Prefix (E)
E — VTail
Prefix — F
Prefix — A
Tail - +E
Tail — A

Thursday, August 30, 12

Simple conversions

A—B
A-B|C|] —— Ao C

D — E Ftail
D-oE{f}] ——— |Fuail - FFrail
Ftail & A

Thursday, August 30, 12

Top-down vs. Bottom-up parsers

® Top-down parsers expand the parse tree in pre-order
® |dentify parent nodes before the children

® Bottom-up parsers expand the parse tree in post-order
® |dentify children before the parents

® Notation:
® LL(I):Top-down derivation with | symbol lookahead
® LL(k):Top-down derivation with k symbols lookahead

® LR(l): Bottom-up derivation with | symbol lookahead

Thursday, August 30, 12

Thursday, August 30, 12

What is parsing

® Parsing is recognizing members in a language specified/
defined/generated by a grammar

® When a construct (corresponding to a production in a
grammar) is recognized, a typical parser will take some
action

® |n a compiler; this action generates an intermediate
representation of the program construct

® In an interpreter, this action might be to perform the
action specified by the construct. Thus, if a+b is
recognized, the value of a and b would be added and
placed in a temporary variable

Top-down parsing

Thursday, August 30, 12

Top-down parsing

® |dea: we know sentence has to start with initial symbol

® Build up partial derivations by predicting what rules are used
to expand non-terminals

® Often called predictive parsers

® [f partial derivation has terminal characters, match them
from the input stream

Thursday, August 30, 12

A simple example
S—=ABc$
A= xaA
A—yaA

A—c

B—b ® A sentence in the grammar:

B—A xacc$

Thursday, August 30, 12

A simple example
S—2ABc$
A = xaA
A-yaA

A—-c

B—b ® A sentence in the grammar:

B—A xacc$

Current derivation: S

Thursday, August 30, 12

A simple example
S—2ABc$
A = xaA
A-yaA

A—-c

B—b ® A sentence in the grammar:

B—A xacc$

Current derivation: ABc $

Predict rule

Thursday, August 30, 12

Thursday, August 30, 12

A simple example

S—2ABc$

A= xaA

Choose based on
first set of rules

A yaA

A—c

B—A xacc$

Current derivation: xaABc$

Predict rule based on next token ‘

B—b ® A sentence in the grammar:

Thursday, August 30, 12

A simple example
S—2ABc$
A= xaA
A—yaA
A—-c
B—b ® A sentence in the grammar:

B—A xacc$

Current derivation: xaABc$

Match token ‘

Thursday, August 30, 12

A simple example
S—2ABc$
A = xaA
A—yaA
A—c
B—b ® A sentence in the grammar:

B—A xacc$

Current derivation: xacBc $

Match token

Thursday, August 30, 12

A simple example
S—2ABc$
A= xaA
A—yaA
A—-c
B—b ® A sentence in the grammar:

B—A xacc$

Current derivation: xaABc$

Match token ‘

Thursday, August 30, 12

A simple example

S—=ABc$

A = xaA

Choose based on
first set of rules

A—yaA

A—c

B—b ® A sentence in the grammar:

B—A xacc$

Current derivation: xacBc $

Predict rule based on next token ‘

Thursday, August 30, 12

A simple example
S—2>ABc#$
A = xaA

Choose based on
follow set

A—yaA
A—-c

B—b ® A sentence in the grammar:

B—A xacc$

Current derivation: xacAc$

Predict rule based on next token ‘

Thursday, August 30, 12

A simple example
S—2ABc$
A= xaA
A—yaA
A—-c
B—b ® A sentence in the grammar:

B—A xacc$

Current derivation: xacc$

Match token

A simple example
S—2ABc$
A= xaA
A—yaA
A—-c
B—b ® A sentence in the grammar:

B—A xacc$

Current derivation: xacc$

Match token

Thursday, August 30, 12

First and follow sets

® First(x): the set of terminals that
begin all strings that can be derived
from o

S—ABS$
® First(A) = {x,y} Ao xaA
® First(xaA) = {x} A A

- ya
® First (AB) = {x,y, b} A
-

® Follow(A): the set of terminals that
can appear immediately after A in B—b
some partial derivation

® Follow(A) = {b}

Thursday, August 30, 12

First and follow sets

® First(x) ={aeVe| x ="aB}u{A|ifx =" A}

e Follow(A)={aeV.|S=*..,Aa. .} u{$|ifS=*..A$}

S: start symbol
a: a terminal symbol
A a non-terminal symbol

o,B: a string composed of terminals and
non-terminals (typically, & is the
RHS of a production =: derivedin | step

=" derived in 0 or more steps

=" derived in | or more steps

Thursday, August 30, 12

Computing first sets

® Terminal: First(a) = {a}
® Non-terminal: First(A)
® Look at all productions for A
A = XiXz... Xk
® First(A) 2 (First(Xi) -)
® If A € First(X), First(A) 2 (First(X2) - N)
e If Nis in First(Xj) for all i, then A € First(A)

® Computing First(x): similar procedure to computing
First(A)

Thursday, August 30, 12

Exercise

® What are the first sets for all the non-terminals in following
grammar:

S—ABS$
A= xaA
A - yaA
A A
B—b
B—A

Thursday, August 30, 12

Thursday, August 30, 12

Computing follow sets

® Follow(S) = {}
® To compute Follow(A):

® Find productions which have A on rhs.Three rules:
I. X = A B:Follow(A) 2 (First(B) -)
2. X = oA B:If A € First(B), Follow(A) 2 Follow(X)
3. X = o A:Follow(A) 2 Follow(X)

® Note: Follow(X) never has A in it.

Exercise

® What are the follow sets for

S—ABS$
A= xaA
A yaA
A— A
B—b
B—A

Thursday, August 30, 12

Towards parser generators

® Key problem: as we read the source program, we need to
decide what productions to use

® Step I:find the tokens that can tell which production P (of
the form A = XX ... Xim) applies

Predict(P) =

First(Xy ... X,,) if A& First(X; ... X,,)
(First(X ... X,,) — A) UFollow(A) otherwise

® |f next token is in Predict(P), then we should choose this
production

Thursday, August 30, 12

Parse tables

® Step 2:build a parse table

® Given some non-terminal V, (the non-terminal we are
currently processing) and a terminal V¢ (the lookahead
symbol), the parse table tells us which production P to
use (or that we have an error

® More formally:

T:Va xV, = P u {Error}

Thursday, August 30, 12

Building the parse table

® Start:T[A][t] = //initialize all fields to “error”

foreach A:

foreach P with A on its |hs:

foreach t in Predict(P): I.S>ABS$

T[A][t] =P 2.A = xaA

® Exercise: build parse table for our toy grammar 3JA—-yaA
4.A >\
5B—b

Thursday, August 30, 12

Thursday, August 30, 12

Stack-based parser for LL(I)

® Given the parse table, a stack-based algorithm is much
simpler to generate than a recursive descent parser

® Basic algorithm:
I. Push the RHS of a production onto the stack
2. Pop a symbol, if it is a terminal, match it

3. Ifitis a non-terminal, take its production according to
the parse table and go to |

® Algorithm on page 121

® Note: always start with start state

Thursday, August 30, 12

I.S2>ABS$

An example A7
3.A—-yaA
® How would a stack-based parser parse: 4. AN
xayab 3B
Parse stack Remaining input Parser action
S xayab$ predict |
Thursday, August 30, 12
I.S>ABS$
An example ~ **7
3.A—yaA
® How would a stack-based parser parse: 4. AN
xayab 5.B—=b
Parse stack Remaining input Parser action
S xayab$ predict |
ABS$ xayab$ predict 2
xaAB$ xayab$ match(x)
Thursday, August 30, 12
I.S>ABS$
An example A7
3.A—yaA
® How would a stack-based parser parse: 4. AN
xayab 5B b
Parse stack Remaining input Parser action
S xayab$ predict |
ABS$ xayab$ predict 2
xaAB$ xayab$ match(x)
aAB$ ayab$ match(a)
ABS$ yab$ predict 3

Thursday, August 30, 12

I.S>ABS$
An example A7
3.A—yaA
® How would a stack-based parser parse: 4. AN
xayab 3B
Parse stack Remaining input Parser action
S xayab$ predict |
ABS$ xayab$ predict 2
Thursday, August 30, 12
I.S>ABS$
An example ~ **74
3.A—yaA
® How would a stack-based parser parse: 4. AN
xayab 5.B—b
Parse stack Remaining input Parser action
S xayab$ predict |
ABS$ xayab$ predict 2
xaAB$ xayab$ match(x)
aAB$ ayab$ match(a)
Thursday, August 30, 12
I.S>ABS$
An example A7
3.A—yaA
® How would a stack-based parser parse: 4. AN
xayab 5B b
Parse stack Remaining input Parser action
S xayab$ predict |
ABS$ xayab$ predict 2
xaAB$ xayab$ match(x)
aAB$ ayab$ match(a)
ABS$ yab$ predict 3
yaAB$ yab$ match(y)

Thursday, August 30, 12

I.S2>ABS$

An example A7
3.A—yaA
® How would a stack-based parser parse: 4. AN
xayab 5B b
Parse stack Remaining input Parser action
S xayab$ predict |
ABS$ xayab$ predict 2
xaABS$ xayab$ match(x)
aAB$ ayab$ match(a)
ABS$ yab$ predict 3
yaAB$ yab$ match(y)
aAB$ ab$ match(a)
ABS$ b$ predict 4
Thursday, August 30, 12
I.S>ABS$
2. A= xaA
An example
3.A—yaA
® How would a stack-based parser parse: 4. AN
xayab 5.B—b
Parse stack Remaining input Parser action
S xayab$ predict |
ABS$ xayab$ predict 2
xaAB$ xayab$ match(x)
aAB$ ayab$ match(a)
ABS$ yab$ predict 3
yaAB$ yab$ match(y)
aABS$ ab$ match(a)
ABS$ b$ predict 4
B$ b$ predict 5
b$ b$ match(b)

I.S>ABS$
An example A7
3.A—yaA
® How would a stack-based parser parse: 4. AN
xayab 5.B—>b
Parse stack Remaining input Parser action
S xayab$ predict |
ABS$ xayab$ predict 2
xaAB$ xayab$ match(x)
aAB$ ayab$ match(a)
ABS$ yab$ predict 3
yaAB$ yab$ match(y)
aAB$ ab$ match(a)
Thursday, August 30, 12
I.S>ABS$
2. A= xaA
An example
3.A—yaA
® How would a stack-based parser parse: 4. AN
xayab 5.B—b
Parse stack Remaining input Parser action
S xayab$ predict |
ABS$ xayab$ predict 2
xaAB$ xayab$ match(x)
aAB$ ayab$ match(a)
ABS$ yab$ predict 3
yaAB$ yab$ match(y)
aAB$ ab$ match(a)
ABS$ b$ predict 4
B$ b$ predict 5
Thursday, August 30, 12
I.S>ABS$
An example A7
3.A—yaA
® How would a stack-based parser parse: 4. AN
xayab 5.B—>b
Parse stack Remaining input Parser action
S xayab$ predict |
ABS$ xayab$ predict 2
xaAB$ xayab$ match(x)
aAB$ ayab$ match(a)
ABS$ yab$ predict 3
yaAB$ yab$ match(y)
aAB$ ab$ match(a)
ABS$ b$ predict 4
B$ b$ predict 5
b$ b$ match(b)
$ $ Done!

Thursday, August 30, 12

Dealing with semantic actions

® When a construct (corresponding to a production in a
grammar) is recognized, a typical parser will invoke a

semantic action

® In a compiler, this action generates an intermediate

representation of the program construct

® In an interpreter, this action might be to perform the
action specified by the construct.Thus, if a+b is
recognized, the value of a and b would be added and

placed in a temporary variable

Thursday, August 30, 12

Thursday, August 30, 12

Dealing with semantic actions

® We can annotate a grammar with action symbols
® Tell the parser to invoke a semantic action routine
® Can simply push action symbols onto stack as well
® When popped, the semantic action routine is called
® Routine manipulates semantic records on a stack
® Can generate new records (e.g., to store variable info)
® Can generate code using existing records

® Example: semantic actions for x = a + 3

statement ::= |D #id = expr #assign
expr = term + term #addop
term = |D #id | LITERAL #num

Thursday, August 30, 12

Left recursion

® |eft recursion is a problem for LL(I) parsers
® |HS is also the first symbol of the RHS
® Consider:
E-E+T

® What would happen with the stack-based algorithm?

Non-LL(l) grammars

® Not all grammars are LL(1)!
® Consider
<stmt> — if <expr> then <stmt list> endif
<stmt> — if <expr> then <stmt list> else <stmt list> endif
® This is not LL(I) (why?)
® We can turn this in to
<stmt> — if <expr> then <stmt list> <if suffix>
<if suffix> = endif

<if suffix> — else <stmt list> endif

Thursday, August 30, 12

LL(k) parsers

® Can look ahead more than one symbol at a time

® k-symbol lookahead requires extending first and follow
sets

® 2-symbol lookahead can distinguish between more rules:

A — ax | ay
® More lookahead leads to more powerful parsers

® What are the downsides?

Thursday, August 30, 12

Removing left recursion

E — E| Etail
E>E+T El —-T
—_
E—-T Etail — +T Etail
Etail =& A

Thursday, August 30, 12

Thursday, August 30, 12

Are all grammars LL(k)?

® No! Consider the following grammar:

S —-E
E —(E+E)
E —(E-E)
E —x

® When parsing E, how do we know whether to use rule 2 or
3?

® Potentially unbounded number of characters before the
distinguishing ‘+’ or ‘-’ is found

® No amount of lookahead will help!

Thursday, August 30, 12

In real languages?

® Consider the if-then-else problem
e if x then y else z
® Problem: else is optional
e if a then if b then c else d
® Which if does the else belong to?

® This is analogous to a “bracket language”: [J (i = j)

s —[scC

S =\ [[] can be parsed: SSAC or SSCA
CcC -] (it's ambiguous!)

C -

Solving the if-then-else problem
® The ambiguity exists at the language level.To fix, we need to
define the semantics properly
®] matches nearest unmatched [”
® This is the rule C uses for if-then-else

® What if we try this?

S =[S

S —SlI This grammar is still not LL(1)
SI = [SI] (or LL(k) for any k!)

SI = A

Thursday, August 30, 12

Two possible fixes

® [f there is an ambiguity, prioritize one production over
another

® eg,if Cis on the stack, always match “]” before matching

ayn
s —[sC
S -\
c -]
C -2

® Another option: change the language!

® e.g,all if-statements need to be closed with an endif

S —ifSE
S — other
E — else S endif
E — endif
Thursday, August 30, 12
LR Parsers

® Parser which does a Left-to-right, Right-most derivation

® Rather than parse top-down, like LL parsers do, parse
bottom-up, starting from leaves

® Basic idea: put tokens on a stack until an entire production
is found

® |ssues:
® Recognizing the endpoint of a production
® Finding the length of a production (RHS)

® Finding the corresponding nonterminal (the LHS of the
production)

Thursday, August 30, 12

Parsing if-then-else

® What if we don’t want to change the language?
® C does not require { } to delimit single-statement blocks

® To parse if-then-else, we need to be able to look ahead at the
entire rhs of a production before deciding which production
to use

® In other words, we need to determine how many “]” to
match before we start matching “["’s

® R parsers can do this!

Thursday, August 30, 12

Thursday, August 30, 12

LR Parsers

® Basic idea:

® shift tokens onto the stack.At any step, keep the set of
productions that could generate the read-in tokens

® reduce the RHS of recognized productions to the
corresponding non-terminal on the LHS of the
production. Replace the RHS tokens on the stack with
the LHS non-terminal.

Thursday, August 30, 12

Data structures

® At each state, given the next token,
® A goto table defines the successor state
® An action table defines whether to
® shift — put the next state and token on the stack
® reduce —an RHS is found; process the production

® terminate — parsing is complete

Simple example

I. P—S
2. S—x;S
3. S—e
Symbol
X ; e P S Action
0 | 3 5 Shift
| 2 Shift
2 | 3 4 Shift
State
3 Reduce 3
4 Reduce 2
5 Accept

Thursday, August 30, 12

Parsing using an LR(0) parser

® Basic idea: parser keeps track, simultaneously, of all possible
productions that could be matched given what it’s seen so far.

Thursday, August 30, 12

Example

® Parse“x;x;e”

When it sees a full production, match it.
® Maintain a parse stack that tells you what state you're in
® Startin state 0

® In each state, look up in action table whether to:

® shift: consume a token off the input; look for next state in goto

table; push next state onto stack

® reduce: match a production; pop off as many symbols from state

stack as seen in production; look up where to go according to
non-terminal we just matched; push next state onto stack

® accept: terminate parse

Step Parse Stack Remaining Input Parser Action
| 0 Xx;x;e Shift |
2 (] ix;e Shift 2
3 012 x;e Shift |
4 o121 H) Shift 2
5 01212 e Shift 3
6 012123 Reduce 3 (goto 4)
7 012124 Reduce 2 (goto 4)
8 0124 Reduce 2 (goto 5)
9 05 Accept

Thursday, August 30, 12

Thursday, August 30, 12

LR(k) parsers

® LR(0) parsers
® No lookahead

® Predict which action to take by looking only at the
symbols currently on the stack

® LR(k) parsers
® Can look ahead k symbols
® Most powerful class of deterministic bottom-up parsers

® LR(I) and variants are the most common parsers

Terminology for LR parsers

“wyr

e Configuration: a production augmented with a ‘s
A— X| 4..Xi . Xi+| ---Xi

® The“*” marks the point to which the production has been
recognized. In this case, we have recognized X ... X;

e Configuration set:all the configurations that can apply at a given
point during the parse:

A—B+CD
A - B-+GH
T—2BZ

® |dea: every configuration in a configuration set is a production
that we could be in the process of matching

Thursday, August 30, 12

Thursday, August 30, 12

Configuration closure set
® Include all the configurations necessary to recognize the
next symbol after the ¢
® For each configuration in set:
® [f next symbol is terminal, no new configuration added

® If next symbol is non-terminal X, for each production of
the form X = «,add configuration X — <«

closure0({S = < E $}) = {

S—E$
S—E$ E—«E+T
E-E+T|T E— T
T-=1ID| (E) T—-ID

T+ ()

Successor configuration set

® Starting with the initial configuration set
sO = closure0({S = * o $})

an LR(0) parser will find the successor given the next symbol

® X can be either a terminal (the next token from the scanner)
or a non-terminal (the result of applying a reduction)

® Determining the successor s’ = go_to0(s, X):

® For each configuration in s of the form A = 3 * X y add
A—-BXeytot

® s’ = closure0(t)

Thursday, August 30, 12

CFSM

® CFSM = Characteristic Finite State Machine
® Nodes are configuration sets (starting from s0)

® Arcs are go_to relationships

State0 |—ID—>| State 1

§--5% S-ID-
S—-ID

S'—>S$ 1

S—ID 8

{

State2 [—$—>| State3
S—+S-§$ S—>S§-

Thursday, August 30, 12

Building the goto table

® We can just read this off from the CFSM

Thursday, August 30, 12

Building the action table

® Given the configuration set s:

® We shift if the next token matches a terminal after the ¢ in
some configuration

A — & +aPesandaeV,else error

® We reduce production P if the ¢ is at the end of a production
B = « * € s where production P is B = «

e Extra actions:

® shift if goto table transitions between states on a non-
terminal

® accept if we have matched the goal production

Symbol
ID $ S
0 | 2
|
State
2 3
3
Thursday, August 30, 12
Action table
0 Shift
| Reduce 2
State
2 Shift
3 Accept

Thursday, August 30, 12

Thursday, August 30, 12

Conflicts in action table

® For LR(0) grammars, the action table entries are unique:
from each state, can only shift or reduce

® But other grammars may have conflicts

® Reduce/reduce conflicts: multiple reductions possible
from the given configuration

® Shift/reduce conflicts: we can either shift or reduce from
the given configuration

Shift/reduce conflict

® Consider the following grammar:
S—Ay
A = x| xx

® This leads to the following configuration set (after shifting

one “X™
A xex
A—xe

® Can shift or reduce here

Thursday, August 30, 12

Shift/reduce example (2)

® Consider the following grammar:
S—Ay
A A|x
® This leads to the following initial configuration set:
S— Ay
A ex
AN

® Can shift or reduce here

Thursday, August 30, 12

Lookahead

® Can resolve reduce/reduce conflicts and shift/reduce
conflicts by employing lookahead

® Looking ahead one (or more) tokens allows us to
determine whether to shift or reduce

® (cf how we resolved ambiguity in LL(I) parsers by
looking ahead one token)

Thursday, August 30, 12

Semantic actions

® Recall:in LL parsers, we could integrate the semantic
actions with the parser

® Why! Because the parser was predictive
® Why doesn’t that work for LR parsers?

® Don’t know which production is matched until parser
reduces

® For LR parsers, we put semantic actions at the end of
productions

® May have to rewrite grammar to support all necessary
semantic actions

Thursday, August 30, 12

Parsers with lookahead

® Adding lookahead creates an LR(I) parser

® Built using similar techniques as LR(0) parsers, but uses
lookahead to distinguish states

® LR(I) machines can be much larger than LR(0)
machines, but resolve many shift/reduce and reduce/
reduce conflicts

® Other types of LR parsers are SLR(I) and LALR(I)
e Differ in how they resolve ambiguities

® yacc and bison produce LALR(I) parsers

Thursday, August 30, 12

Thursday, August 30, 12

LR(I) parsing

® Configurations in LR(1) look similar to LR(0), but they are

extended to include a lookahead symbol
A = X .. Xi e Xirt .. X, | (where [€V u N)

® [f two configurations differ only in their lookahead
component, we combine them

A2 X)L X Xisg e Xi ,{II Im}

Building configuration sets

® To close a configuration
B—oa-AB,I

® Add all configurations of the form A = Yy, u where u €
First(Bl)

® Intuition: the lookahead symbol for any configuration is the
terminal we expect to see dfter the configuration has been
matched

® The parse could apply the production for A, and the
lookahead after we apply the production should match
the next token that would be produced by B

Thursday, August 30, 12

Example

closurel ({S = < E$,{\}}) =

SoES
E—E+T|T
T-ID| ()

Thursday, August 30, 12

Thursday, August 30, 12

Example

closurel ({S = < E$,{\}}) =

S ES A
E—E+T{$
T {8}
E—-E+T|T
T-ID|@®

Example
closurel ({S = < E$,{\}}) =
S <ES{\}
S—E$
E-E+T|T
T—ID|(E)
Thursday, August 30, 12
Example
closurel ({S = < E$,{\}}) =
S— e E$,{)\}
T E— «E+T{$}
E-E+T|T E— T {$}
T-ID|E

Thursday, August 30, 12

Thursday, August 30, 12

Example

closurel ({S = < E$,{\}}) =

S—>E$
E>E+T|T
T-ID|@®

Example

closurel ({S = < E$,{\}}) =

S— <E${\}

E— <E+T({$}

E— T {$}

T — «ID,{$}

T -« (E).{$}

Thursday, August 30, 12

SoES
E—E+T|T
T-ID| ()

Example

closurel ({S = < E$,{\}}) =

S -E$ (A

E— «E+T({$}

E- T {$}

T — «ID,{$}

T--E.{%

E— «E+T{+}

E— T {+

S— <E${\}
E— «E+T({$}
S—-ES$
E-E+T|T E— T {$}
T-ID|@®
T — «ID,{$}
Thursday, August 30, 12
Example
closurel ({S = < E$,{\}}) =
S—<ES${\}
E— «E+T{$}
S—ES$
E-E+T|T E- - T{$}
T—1ID|(E)
T — «ID,{$}
T--(B).{8}
E— «E+T{+}
Thursday, August 30, 12
Example
closurel ({S = < E$,{\}}) =
S—+E${\}
E— o E+T.{$}
S—-ES$
E-E+T|T E— T {$}
T—ID|(E)
T — «ID,{$}
T - (E).{$}
E— «E+T{+}
E— -T.{+}
T — «ID,{+}

Thursday, August 30, 12

Thursday, August 30, 12

SoE$
E-E+T|T
T-ID|@E

Example

closurel ({S = < E$,{\}}) =

S—+E${\}

E—"E+T.{$}

E— T {$}

T — «ID,{$}

T+ (E).{8

E— «E+T{+}

E— -T.{+}

T — «ID,{+}

T E.{*

Thursday, August 30, 12

Building goto and action tables

® The function goto | (configuration-set, symbol) is analogous to
gotoO(configuration-set, symbol) for LR(0)

e Build goto table in the same way as for LR(0)
o Key difference: the action table.
action[s][x] =

® reduce when is at end of configuration and x €
lookahead set of configuration

A-axe{.x..}es
® shift when ¢ is before x

A—>Bexyes

Example

® Consider the simple grammar:
<program> — begin <stmts>end $
<stmts> — SimpleStmt ; <stmts>
<stmts> — begin <stmts> end ; <stmts>

<stmts> - A

Thursday, August 30, 12

Action and goto tables

begin end H SimpleStmt $ <program>| <stmts>
0 S/
| S/4 R4 S/5 S/2
2 S/3
3 A
4 S/4 R4 S/5 S17
5 S/é
6 S/4 R4 S/5 ALY
7 S/8
8 S/9
9 S/4 R4 S/é S/l
10 R2
1 R3

Thursday, August 30, 12

<program> — begin <stmts> end $
<stmts> — SimpleStmt ; <stmts>

<omis> g <semes> and s> Example

<stmts> = A

® Parse: begin SimpleStmt ; SimpleStmt ; end $

Step Parse Stack Remaining Input Parser Action

| 0 begin S;S;end $ Shift |

2 0l S;S;end $ Shift 5

3 0l5 ;S;end $ Shift 6

4 0156 S;end $ Shift 5

5 01565 ;end $ Shift 6

6 015656 end $ Reduce 4 (goto 10)
7 01565610 end $ Reduce 2 (goto 10)
8 015610 end $ Reduce 2 (goto 2)
9 012 end $ Shift 3

10 0123 $ Accept

Thursday, August 30, 12

Problems with LR(1) parsers

® LR(I) parsers are very powerful ...

® But the table size is much larger than LR(0) — as much
as a factor of | V¢| (why?)

® Example:Algol 60 (a simple language) includes several
thousand states!

® Storage efficient representations of tables are an important
issue

Thursday, August 30, 12

Solutions to the size problem

® Different parser schemes

® SLR (simple LR): build an CFSM for a language, then add
lookahead wherever necessary (i.e., add lookahead to
resolve shift/reduce conflicts)

® What should the lookahead symbol be?

® To decide whether to reduce using production A =
«, use Follow(A)

® LALR:merge LR states in certain cases (we won’t discuss
this)

Thursday, August 30, 12

Thursday, August 30, 12

