Agenda

Parsers

Terminology

- $\operatorname{Grammar} G=\left(\mathrm{V}_{\mathrm{t}}, \mathrm{V}_{\mathrm{n}}, \mathrm{S}, \mathrm{P}\right)$
- V_{t} is the set of terminals
- V_{n} is the set of non-terminals
- S is the start symbol
- P is the set of productions
- Each production takes the form: $\mathrm{V}_{\mathrm{n}} \rightarrow \lambda \mid\left(\mathrm{V}_{\mathrm{n}} \mid \mathrm{V}_{\mathrm{t}}\right)+$
- Grammar is context-free (why?)
- A simple grammar:
$G=(\{a, b\},\{S, A, B\},\{S \rightarrow A B \$, A \rightarrow A a, A \rightarrow a, B \rightarrow B b, B \rightarrow$ b\}, S)

Terminology

- Productions (rewrite rules) tell us how to derive strings in the language
- Apply productions to rewrite strings into other strings
- We will use the standard BNF form
- $P=\{$
$S \rightarrow A B \$$
$A \rightarrow A a$
$A \rightarrow a$
$B \rightarrow B b$
$\mathrm{B} \rightarrow \mathrm{b}$
\}
- Terminology
- LL(I) Parsers
- Overview of LR Parsing

Terminology

- V is the vocabulary of a grammar, consisting of terminal $\left(\mathrm{V}_{\mathrm{t}}\right)$ and non-terminal $\left(\mathrm{V}_{\mathrm{n}}\right)$ symbols
- For our sample grammar
- $V_{n}=\{S, A, B\}$
- Non-terminals are symbols on the LHS of a production
- Non-terminals are constructs in the language that are recognized during parsing
- $V_{t}=\{a, b\}$
- Terminals are the tokens recognized by the scanner
- They correspond to symbols in the text of the program

Generating strings

$S \rightarrow A B \$$
$A \rightarrow A a$
$A \rightarrow a$
$B \rightarrow B b$
$B \rightarrow b$

- Given a start rule, productions tell us how to rewrite a non-terminal into a different set of symbols
- By convention, first production applied has the start symbol on the left, and there is only one such production

To derive the string " $\mathrm{a} a \mathrm{~b} \mathrm{~b}$ b" we can do the following rewrites:

$$
\begin{aligned}
& S \Rightarrow A B \$ \Rightarrow A \text { a } B \$ \Rightarrow a \text { a } B \$ \Rightarrow a \text { a } B b \$ \Rightarrow \\
& \text { a a } B b b \$ \Rightarrow a \text { abbb } \$
\end{aligned}
$$

Terminology

- Strings are composed of symbols
- $A A a a B b b A a$ is a string
- We will use Greek letters to represent strings composed of both terminals and non-terminals
- $L(G)$ is the language produced by the grammar G
- All strings consisting of only terminals that can be produced by G
- In our example, $\mathrm{L}(\mathrm{G})=\mathrm{a}+\mathrm{b}+\$$
- All regular expressions can be expressed as grammars for context-free languages, but not vice-versa

Leftmost derivation

- Rewriting of a given string starts with the leftmost symbol
- Exercise: do a leftmost derivation of the input program

$$
F(V+V)
$$

using the following grammar:

E	\rightarrow
$\mathrm{Prefix}(\mathrm{E})$	
Prefix	$\rightarrow \mathrm{F}$
Prefix	$\rightarrow \lambda$
Tail	$\rightarrow+\mathrm{E}$
Tail	$\rightarrow \lambda$

- What does the parse tree look like?

Parse trees

- Tree which shows how a string was produced by a language
- Interior nodes of tree: nonterminals
- Children: the terminals and non-terminals generated by applying a production rule
- Leaf nodes: terminals

Rightmost derivation

- Rewrite using the rightmost non-terminal, instead of the left
- What is the rightmost derivation of this string?

$$
F(V+V)
$$

E	\rightarrow
$\mathrm{Prefix}(\mathrm{E})$	
Prefix	$\rightarrow \mathrm{F}$
Prefix	$\rightarrow \lambda$
Tail	$\rightarrow+\mathrm{E}$
Tail	$\rightarrow \lambda$

Top-down vs. Bottom-up parsers

- Top-down parsers expand the parse tree in pre-order
- Identify parent nodes before the children
- Bottom-up parsers expand the parse tree in post-order
- Identify children before the parents
- Notation:
- LL(I):Top-down derivation with I symbol lookahead
- LL(k):Top-down derivation with k symbols lookahead
- LR(I): Bottom-up derivation with I symbol lookahead

What is parsing

- Parsing is recognizing members in a language specified/ defined/generated by a grammar
- When a construct (corresponding to a production in a grammar) is recognized, a typical parser will take some action
- In a compiler, this action generates an intermediate representation of the program construct
- In an interpreter, this action might be to perform the action specified by the construct. Thus, if $a+b$ is recognized, the value of a and b would be added and placed in a temporary variable

Top-down parsing

- Idea: we know sentence has to start with initial symbol
- Build up partial derivations by predicting what rules are used to expand non-terminals
- Often called predictive parsers
- If partial derivation has terminal characters, match them from the input stream

A simple example

$$
\begin{aligned}
& S \rightarrow A B C \$ \\
& A \rightarrow x a A \\
& A \rightarrow y a A \\
& A \rightarrow c \\
& B \rightarrow b \quad \bullet A \text { sentence in the grammar: } \\
& B \rightarrow \lambda \quad x a c c \$
\end{aligned}
$$

Top-down parsing

$$
\begin{aligned}
& S \rightarrow A B c \$ \\
& A \rightarrow x \text { a } A \\
& A \rightarrow y \text { a } A \\
& A \rightarrow c \\
& B \rightarrow b \quad \bullet \quad \text { A sentence in the grammar: } \\
& B \rightarrow \lambda \quad x a c c \$
\end{aligned}
$$

A simple example

S \rightarrow A B c $\$$
$A \rightarrow x$ a A
$A \rightarrow y$ a A
$A \rightarrow c$
$B \rightarrow b \quad \bullet$ A sentence in the grammar:
$B \rightarrow \lambda \quad$ xacc $\$$

Current derivation: A B c \$

A simple example

$$
\begin{aligned}
& S \rightarrow A B C \$ \\
& \begin{array}{ll}
A \rightarrow x \text { a A } \\
A \rightarrow y \text { a } A \\
A \rightarrow c
\end{array} \\
& \begin{array}{ll}
B \rightarrow b & \text { A sentence in the grammar: } \\
B \rightarrow \lambda & x a c c \$
\end{array}
\end{aligned}
$$

Current derivation: xaABc\$
Predict rule based on next token

A simple example

$$
\begin{aligned}
& S \rightarrow A B C \$ \\
& A \rightarrow x a A \\
& A \rightarrow y \text { a } A \\
& A \rightarrow c \\
& B \rightarrow b \quad \bullet A \text { sentence in the grammar: } \\
& B \rightarrow \lambda \quad x a c c \$
\end{aligned}
$$

Current derivation: x a A B c \$
Match token

Thursday, August 30, 12

A simple example

$S \rightarrow A B c \$$
$A \rightarrow x a A$
$A \rightarrow y$ aA
$A \rightarrow c$
$B \rightarrow b \quad$ - A sentence in the grammar:
$B \rightarrow \lambda \quad x a c c \$$

Current derivation: x a c B c \$

[^0]
A simple example

$$
\begin{aligned}
& S \rightarrow A B c \$ \\
& A \rightarrow x a A \\
& A \rightarrow y \text { aA } \\
& A \rightarrow c \\
& B \rightarrow b \quad \bullet A \text { sentence in the grammar: } \\
& B \rightarrow \lambda \quad x a c c \$
\end{aligned}
$$

Current derivation: x a A B c \$

A simple example

Choose based on first set of rules	$S \rightarrow A B C \$$	
	$\mathrm{A} \rightarrow \mathrm{xaA}$	
	$A \rightarrow y$ a	
	$A \rightarrow c$	
	$\mathrm{B} \rightarrow \mathrm{b}$	- A sentence in the grammar:
	$B \rightarrow \lambda$	$x \mathrm{acc}$ \$

Current derivation: x a c B c \$
Predict rule based on next token
Thursday, August 30, 12

A simple example

$S \rightarrow A B C \$$
$A \rightarrow x a A$
Choose based on
follow set $\quad \mathrm{A} \rightarrow \mathrm{y}$ a A
$A \rightarrow c$
$\begin{array}{ll}A \rightarrow b \\ B \rightarrow \lambda\end{array} \quad \begin{aligned} & \text { A sentence in the grammar: } \\ & \end{aligned} \quad x$ acc $\$$

Current derivation: x a c λ c $\$$
Predict rule based on next token

A simple example

$$
\begin{aligned}
& S \rightarrow A B c \$ \\
& A \rightarrow x a A \\
& A \rightarrow y \text { a } A \\
& A \rightarrow c \\
& B \rightarrow b \quad \bullet A \text { sentence in the grammar: } \\
& B \rightarrow \lambda \quad x a c c \$
\end{aligned}
$$

Current derivation: xacc \$
\square

First and follow sets

- First(α): the set of terminals that begin all strings that can be derived from α
$S \rightarrow A B \$$
- $\operatorname{First}(A)=\{x, y\}$
- $\operatorname{First}(x a A)=\{x\}$
- First $(A B)=\{x, y, b\}$
- Follow(A): the set of terminals that can appear immediately after A in some partial derivation
- Follow $(A)=\{b\}$

Computing first sets

- Terminal: First(a) $=\{a\}$
- Non-terminal: First(A)
- Look at all productions for A
$A \rightarrow X_{1} X_{2} \ldots X_{k}$
- $\operatorname{First}(A) \supseteq\left(\operatorname{First}\left(X_{1}\right)-\lambda\right)$
- If $\lambda \in \operatorname{First}\left(X_{1}\right), \operatorname{First}(A) \supseteq\left(\operatorname{First}\left(X_{2}\right)-\lambda\right)$
- If λ is in $\operatorname{First}\left(X_{i}\right)$ for all i, then $\lambda \in \operatorname{First}(A)$
- Computing First(α): similar procedure to computing First(A)

A simple example

$$
\begin{aligned}
& S \rightarrow A B C \$ \\
& A \rightarrow x a A \\
& A \rightarrow y \text { aA } \\
& A \rightarrow C \\
& B \rightarrow b \quad \bullet A \text { sentence in the grammar: } \\
& B \rightarrow \lambda \quad x a c c \$
\end{aligned}
$$

Current derivation: x a c c \$
Match token

Thursday, August 30, 12

First and follow sets

- First $(\alpha)=\left\{a \in V_{t} \mid \alpha \Rightarrow{ }^{*} a \beta\right\} \cup\left\{\lambda \mid\right.$ if $\left.\alpha \Rightarrow{ }^{*} \lambda\right\}$
- Follow $(A)=\left\{a \in V_{t} \mid S \Rightarrow^{+} . . . A a \operatorname{...}\right\} \cup\left\{\$ \mid\right.$ if $\left.S \Rightarrow^{+} \ldots A \$\right\}$

S: start symbol
a: a terminal symbol
A: a non-terminal symbo
α, β : a string composed of terminals and non-terminals (typically, α is the RHS of a production
derived in I step derived in 0 or more steps
derived in I or more steps
Thursday August 30, 12

Exercise

- What are the first sets for all the non-terminals in following grammar:

$$
\begin{aligned}
& S \rightarrow A B \$ \\
& A \rightarrow x \text { a } A \\
& A \rightarrow y \text { a } A \\
& A \rightarrow \lambda \\
& B \rightarrow b \\
& B \rightarrow A
\end{aligned}
$$

Computing follow sets

- Follow $(\mathrm{S})=\{ \}$
- To compute Follow(A):
- Find productions which have A on rhs. Three rules:
I. $X \rightarrow \alpha A \beta$: $\operatorname{Follow}(A) \supseteq(\operatorname{First}(\beta)-\lambda)$

2. $X \rightarrow \alpha A \beta$: If $\lambda \in \operatorname{First}(\beta)$, Follow $(A) \supseteq$ Follow (X)
3. $X \rightarrow \alpha$ A: Follow $(A) \supseteq$ Follow (X)

- Note: Follow(X) never has λ in it.

Exercise

- What are the follow sets for

$$
\begin{aligned}
& S \rightarrow A B \$ \\
& A \rightarrow x a A \\
& A \rightarrow y \text { a } A \\
& A \rightarrow \lambda \\
& B \rightarrow b \\
& B \rightarrow A
\end{aligned}
$$

Towards parser generators

- Key problem: as we read the source program, we need to decide what productions to use
- Step I: find the tokens that can tell which production P (of the form $\mathrm{A} \rightarrow \mathrm{X}_{1} \mathrm{X}_{2} \ldots \mathrm{X}_{\mathrm{m}}$) applies

Predict $(P)=$
$\begin{cases}\operatorname{First}\left(X_{1} \ldots X_{m}\right) & \text { if } \lambda \notin \operatorname{First}\left(X_{1} \ldots X_{m}\right) \\ \left(\operatorname{First}\left(X_{1} \ldots X_{m}\right)-\lambda\right) \cup \operatorname{Follow}(A) & \text { otherwise }\end{cases}$
$\left\{\left(\operatorname{First}\left(X_{1} \ldots X_{m}\right)-\lambda\right) \cup \operatorname{Follow}(A) \quad\right.$ otherwise

- If next token is in $\operatorname{Predict}(\mathrm{P})$, then we should choose this production

Building the parse table

- Start: $\mathrm{T}[\mathrm{A}][\mathrm{t}]=/ /$ initialize all fields to "error" foreach A :
foreach P with A on its Ihs:
foreach t in $\operatorname{Predict}(P)$:
$\mathrm{T}[\mathrm{A}][\mathrm{t}]=\mathrm{P}$
I.S \rightarrow A B \$

2. $A \rightarrow x$ aA

- Exercise: build parse table for our toy grammar

Parse tables

- Step 2: build a parse table
- Given some non-terminal V_{n} (the non-terminal we are currently processing) and a terminal V_{t} (the lookahead symbol), the parse table tells us which production P to use (or that we have an error
- More formally:
$\mathrm{T}: \mathrm{V}_{\mathrm{n}} \times \mathrm{V}_{\mathrm{t}} \rightarrow \mathrm{P} \cup\{$ Error $\}$

Stack-based parser for LL(I)

- Given the parse table, a stack-based algorithm is much simpler to generate than a recursive descent parser
- Basic algorithm:
I. Push the RHS of a production onto the stack

2. Pop a symbol, if it is a terminal, match it
3. If it is a non-terminal, take its production according to the parse table and go to I

- Algorithm on page 121
- Note: always start with start state

$$
\begin{array}{cl}
\text { An example } & \begin{array}{l}
\text { 1. } \mathrm{S} \rightarrow \mathrm{AB} \$ \\
\text { 2. } \mathrm{A} \rightarrow \mathrm{xaA}
\end{array} \\
\text { stack-based parser parse: } & \begin{array}{l}
\text { 3. } \mathrm{A} \rightarrow \mathrm{yaA} \\
\text { 4. } \mathrm{A} \rightarrow \mathrm{\lambda}
\end{array} \\
\text { 5. } \mathrm{B} \rightarrow \mathrm{~b}
\end{array}
$$

- How would a stack-based parser parse:
$x a y a b$

Parse stack	Remaining input	Parser action
S	xayab\$	predict I

An example

- How would a stack-based parser parse:
xayab

1. $S \rightarrow A B \$$
2. $A \rightarrow \mathrm{xaA}$
3. $A \rightarrow y$ aA
4. $A \rightarrow \lambda$
5. $\mathrm{B} \rightarrow \mathrm{b}$

Parse stack	Remaining input	Parser action
S	xауаb\$	predict I
AB\$	xауаb \$	predict 2
xaAB \$	xауаb \$	match (x)

An example

- How would a stack-based parser parse: $x a y a b$

Parse stack	Remaining input	Parser action
S	xayab\$	predict I
AB\$	xayab\$	predict 2
xaAB\$	xayab\$	match(x)
aAB\$	ayab\$	match(a)
AB\$	yab\$	predict 3

An example

- How would a stack-based parser parse: xayab

Parse stack	Remaining input	Parser action
S	xayab\$	predict I
AB \$	xayab\$	predict 2

	I. $S \rightarrow A B \$$
An example	2. $A \rightarrow x a A$ 3. $A \rightarrow y a A$
stack-based parser parse:	4. $A \rightarrow \lambda$ 5. $B \rightarrow b$
Remaining input	Parser action
$x \mathrm{ayab}$ \$	predict I
$x a y a b \$$	predict 2
xayab\$	match(x)
ayab\$	match(a)
yab\$	predict 3
yab\$	match(y)

$$
\begin{aligned}
\text { An example } & \begin{array}{l}
1 . \mathrm{S} \rightarrow \mathrm{ABS} \\
2 . \mathrm{A} \rightarrow \times \mathrm{A} A \\
3 . \mathrm{A} \rightarrow \mathrm{y} \mathrm{~A}
\end{array} \\
\text { a stack-based parser parse: } & \begin{array}{l}
4 . \mathrm{A} \rightarrow \mathrm{~A} \\
5 . \mathrm{B} \rightarrow \mathrm{~b}
\end{array}
\end{aligned}
$$

- How would a stack-based parser parse
$x a y a b$

Parse stack	Remaining input	Parser action
S	$x a y a b \$$	predict I
A B \$	xayab\$	predict 2
$\times \mathrm{ABB}$ \$	xayab\$	match(x)
a A B \$	ayab\$	match(a)
A B \$	yab\$	predict 3
yaAB\$	yab\$	match(y)
a A B \$	ab\$	match(a)

An example

1. $S \rightarrow A B \$$
2. $A \rightarrow x a A$
3. $A \rightarrow y a A$
4. $A \rightarrow \lambda$
5. $B \rightarrow b$

- How would a stack-based parser parse: 4. $A \rightarrow \lambda$
x a y ab

Parse stack	Remaining input	Parser action
S	$x a y a b \$$	predict I
A B \$	$x a y a b \$$	predict 2
$\times \mathrm{AAB}$ \$	$x a y a b \$$	match(x)
a A B \$	ayab\$	match(a)
A B \$	yab\$	predict 3
yaAB\$	уab\$	match(y)
a AB\$	ab\$	match(a)
A B \$	b \$	predict 4
B \$	b \$	predict 5

An example

How would a stack-based parser parse: x a y ab

Parse stack	Remaining input	Parser action
S	$x a y a b \$$	predict I
A B \$	xayab\$	predict 2
$\times \mathrm{a}$ A \$	xayab\$	match(x)
a A B \$	ayab\$	match(a)
A B \$	yab\$	predict 3
yaAB\$	yab\$	match(y)
a A B \$	ab\$	match(a)
A B \$	b \$	predict 4
B \$	b \$	predict 5
b \$	b \$	match(b)
\$	\$	Done!

Dealing with semantic actions

- When a construct (corresponding to a production in a grammar) is recognized, a typical parser will invoke a semantic action
- In a compiler, this action generates an intermediate representation of the program construct
- In an interpreter, this action might be to perform the action specified by the construct. Thus, if $a+b$ is recognized, the value of a and b would be added and placed in a temporary variable

Dealing with semantic actions

- We can annotate a grammar with action symbols
- Tell the parser to invoke a semantic action routine
- Can simply push action symbols onto stack as well
- When popped, the semantic action routine is called
- Routine manipulates semantic records on a stack
- Can generate new records (e.g., to store variable info)
- Can generate code using existing records
- Example: semantic actions for $x=a+3$
statement ::= ID \#id = expr \#assign
expr ::= term + term \#addop
term ::= ID \#id | LITERAL \#num

Non-LL(I) grammars

- Not all grammars are LL(I)!
- Consider
<stmt> \rightarrow if <expr> then <stmt list> endif
<stmt> \rightarrow if <expr> then <stmt list> else <stmt list> endif
- This is not $\operatorname{LL}(1)$ (why?)
- We can turn this in to
<stmt> \rightarrow if <expr> then <stmt list> <if suffix>
<if suffix> \rightarrow endif
<if suffix> \rightarrow else <stmt list> endif

Left recursion

- Left recursion is a problem for $\operatorname{LL}(\mathrm{I})$ parsers
- LHS is also the first symbol of the RHS
- Consider:
$\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T}$
- What would happen with the stack-based algorithm?

LL(k) parsers

- Can look ahead more than one symbol at a time
- k-symbol lookahead requires extending first and follow sets
- 2-symbol lookahead can distinguish between more rules:

$$
A \rightarrow a x \mid \text { ay }
$$

- More lookahead leads to more powerful parsers
- What are the downsides?

Are all grammars LL(k)?

- No! Consider the following grammar:

$$
\begin{aligned}
& S \rightarrow E \\
& E \rightarrow(E+E) \\
& E \rightarrow(E-E) \\
& E \rightarrow x
\end{aligned}
$$

- When parsing E, how do we know whether to use rule 2 or 3?
- Potentially unbounded number of characters before the distinguishing ' + ' or ' - ' is found
- No amount of lookahead will help!

In real languages?

- Consider the if-then-else problem
- if x then y else z
- Problem: else is optional
- if a then if b then c else d
- Which if does the else belong to?
- This is analogous to a "bracket language": [$\left.{ }^{i}\right]^{j}(i \geq j)$

$$
\begin{array}{ll}
S & \rightarrow[S C \\
S & \rightarrow \lambda
\end{array} c
$$

Solving the if-then-else problem

- The ambiguity exists at the language level. To fix, we need to define the semantics properly
- "] matches nearest unmatched ["
- This is the rule C uses for if-then-else
- What if we try this?
$S \rightarrow[S$
$S \rightarrow$ SI
SI $\rightarrow[\mathrm{SI}]$
This grammar is still not $\mathrm{LL}(\mathrm{I})$ SI $\rightarrow \lambda$
(or LL(k) for any k !)

Parsing if-then-else

- What if we don't want to change the language?
- C does not require $\}$ to delimit single-statement blocks
- To parse if-then-else, we need to be able to look ahead at the entire rhs of a production before deciding which production to use
- In other words, we need to determine how many "]" to match before we start matching "["s
- LR parsers can do this!

$$
\begin{aligned}
& S \rightarrow \text { if } S E \\
& S \quad \rightarrow \text { other } \\
& E \quad \rightarrow \text { else } S \text { endif } \\
& E \quad \rightarrow \text { endif }
\end{aligned}
$$

LR Parsers

- Basic idea:
- shift tokens onto the stack. At any step, keep the set of productions that could generate the read-in tokens
- reduce the RHS of recognized productions to the corresponding non-terminal on the LHS of the production. Replace the RHS tokens on the stack with the LHS non-terminal.

Data structures

- At each state, given the next token,
- A goto table defines the successor state
- An action table defines whether to
- shift - put the next state and token on the stack
- reduce - an RHS is found; process the production
- terminate - parsing is complete

Parsing using an LR(0) parser

- Basic idea: parser keeps track, simultaneously, of all possible productions that could be matched given what it's seen so far. When it sees a full production, match it.
- Maintain a parse stack that tells you what state you're in
- Start in state 0
- In each state, look up in action table whether to
- shift: consume a token off the input; look for next state in goto table; push next state onto stack
- reduce: match a production; pop off as many symbols from state stack as seen in production; look up where to go according to non-terminal we just matched; push next state onto stack
- accept: terminate parse

LR(k) parsers

- LR(0) parsers
- No lookahead
- Predict which action to take by looking only at the symbols currently on the stack
- LR(k) parsers
- Can look ahead k symbols
- Most powerful class of deterministic bottom-up parsers
- $\operatorname{LR}(\mathrm{I})$ and variants are the most common parsers

Simple example

I. $P \rightarrow S$
2. $S \rightarrow x ; S$
3. $S \rightarrow e$

		Symbol					
		x	;	e	P	S	Action
State	0	1		3		5	Shift
	1		2				Shift
	2	1		3		4	Shift
	3						Reduce 3
	4						Reduce 2
	5						Accept

[^1]
Example

- Parse "x;x;e"

Step	Parse Stack	Remaining Input	Parser Action
1	0	$\mathrm{x} ; \mathrm{x} ; \mathrm{e}$	Shift I
2	01	$; \mathrm{x} ; \mathrm{e}$	Shift 2
3	012	$\mathrm{x} ; \mathrm{e}$	Shift 1
4	0121	e	Shift 2
5	01212	e	Shift 3
6	012123		Reduce 3 (goto 4)
7	012124		Reduce 2 (goto 4)
8	0124		Reduce 2 (goto 5)
9	05		Accept

Thursday, August 30,12

Terminology for LR parsers

- Configuration: a production augmented with a "•"
$A \rightarrow X_{1} \ldots X_{i} \cdot X_{i+1} \ldots X_{i}$
- The "." marks the point to which the production has been recognized. In this case, we have recognized $X_{1} \ldots X_{i}$
- Configuration set: all the configurations that can apply at a given point during the parse:
$A \rightarrow B \cdot C D$
$\mathrm{A} \rightarrow \mathrm{B} \cdot \mathrm{GH}$
$\mathrm{T} \rightarrow \mathrm{B} \cdot \mathrm{Z}$
- Idea: every configuration in a configuration set is a production that we could be in the process of matching

Configuration closure set

- Include all the configurations necessary to recognize the next symbol after the -
- For each configuration in set:
- If next symbol is terminal, no new configuration added
- If next symbol is non-terminal X, for each production of the form $X \rightarrow \alpha$, add configuration $X \rightarrow \bullet \alpha$

```
S CE$
E->E+T|T
T->ID|(E)
```


Thursday, August 30, 12

CFSM

- CFSM $=$ Characteristic Finite State Machine
- Nodes are configuration sets (starting from s 0)
- Arcs are go_to relationships

```
\(s^{\prime} \rightarrow s \$\)
\(S \rightarrow I D\)
```


Successor configuration set

- Starting with the initial configuration set
s0 $=\operatorname{closure0(\{ S~} \rightarrow$ • $\alpha \$\})$
an $\operatorname{LR}(0)$ parser will find the successor given the next symbo X
- X can be either a terminal (the next token from the scanner) or a non-terminal (the result of applying a reduction)
- Determining the successor $s^{\prime}=$ go_to $0(s, X)$:
- For each configuration in s of the form $A \rightarrow \beta \cdot X \gamma$ add $A \rightarrow \beta \times \cdot \gamma$ to t
- $\mathrm{s}^{\prime}=$ closure0(t)

Building the goto table

- We can just read this off from the CFSM

		Symbol		
		ID	$\$$	S
State	0	I		2
	I			
	2		3	
	3			

Action table

	0	Shift
State	1	Reduce 2
	2	Shift
	3	Accept

Conflicts in action table

- For LR(0) grammars, the action table entries are unique: from each state, can only shift or reduce
- But other grammars may have conflicts
- Reduce/reduce conflicts: multiple reductions possible from the given configuration
- Shift/reduce conflicts: we can either shift or reduce from the given configuration

Shift/reduce conflict

- Consider the following grammar:
$S \rightarrow A y$
A $\rightarrow x \mid x x$
- This leads to the following configuration set (after shifting one " x ":
$\mathrm{A} \rightarrow \mathrm{x} \cdot \mathrm{x}$
$A \rightarrow x \cdot$
- Can shift or reduce here

Shift/reduce example (2)

- Consider the following grammar:
$S \rightarrow A y$
$A \rightarrow \lambda \mid x$
- This leads to the following initial configuration set:
$S \rightarrow \cdot A y$
$A \rightarrow \cdot x$
$A \rightarrow \lambda$.
- Can shift or reduce here

Semantic actions

- Recall: in LL parsers, we could integrate the semantic actions with the parser
- Why? Because the parser was predictive
- Why doesn't that work for LR parsers?
- Don't know which production is matched until parser reduces
- For LR parsers, we put semantic actions at the end of productions
- May have to rewrite grammar to support all necessary semantic actions

Lookahead
 ,

- Can resolve reduce/reduce conflicts and shift/reduce conflicts by employing lookahead
- Looking ahead one (or more) tokens allows us to determine whether to shift or reduce
- (cf how we resolved ambiguity in $\operatorname{LL}(1)$ parsers by looking ahead one token)
Thursday, August 30, 12

Parsers with lookahead

- Adding lookahead creates an LR(I) parser
- Built using similar techniques as $\operatorname{LR}(0)$ parsers, but uses lookahead to distinguish states
- LR(I) machines can be much larger than LR(0) machines, but resolve many shift/reduce and reduce/ reduce conflicts
- Other types of LR parsers are SLR(I) and LALR(I)
- Differ in how they resolve ambiguities
- yacc and bison produce LALR(I) parsers

LR(I) parsing

- Configurations in LR(I) look similar to LR(0), but they are extended to include a lookahead symbol
$A \rightarrow X_{1} \ldots X_{i} \cdot X_{i+1} \ldots X_{j}, I\left(\right.$ where $\left.I \in V_{t} \cup \lambda\right)$
- If two configurations differ only in their lookahead component, we combine them
$A \rightarrow X_{I} \ldots X_{i} \cdot X_{i+1} \ldots X_{j},\left\{I_{I} \ldots I_{m}\right\}$

Building configuration sets

- To close a configuration
$B \rightarrow \alpha \cdot A \beta, I$
- Add all configurations of the form $A \rightarrow \cdot \gamma, u$ where $u \in$ First(β_{1})
- Intuition: the lookahead symbol for any configuration is the terminal we expect to see after the configuration has been matched
- The parse could apply the production for A, and the lookahead after we apply the production should match the next token that would be produced by B

Example

$\operatorname{closurel}(\{S \rightarrow \cdot E \Phi,\{\lambda\}\})=$

$$
S \rightarrow \cdot E \$,\{\lambda\}
$$

Thursday, August 30, 12
$S \rightarrow \cdot E \$,\{\lambda\}$

Example

	closurel $(\{S \rightarrow \cdot \mathrm{E} \$,\{\lambda\}\})=$
	$S \rightarrow \cdot E \$,\{\lambda\}$
	$\mathrm{E} \rightarrow \cdot \mathrm{E}+\mathrm{T},\{\$\}$
$\underline{E} \rightarrow \mathrm{E}+\mathrm{T} \mid T$	$\mathrm{E} \rightarrow \cdot \mathrm{T},\{\$\}$

$T \rightarrow I D \mid(E)$

Example

closurel ($\{\mathrm{S} \rightarrow \cdot \mathrm{E} \$,\{\lambda\}\})=$
$S \rightarrow \cdot E \$,\{\lambda\}$
$\mathrm{E} \rightarrow \cdot \mathrm{E}+\mathrm{T},\{\$\}$

Example

```
closurel ({S ->•E & , {\lambda}})=
```

 \(S \rightarrow E \$\)
 \(E \rightarrow E+T \mid T\)
 \(T \rightarrow I D \mid(E)\)

Example

closurel $(\{S \rightarrow \cdot E \$,\{\lambda\}\})=$
$S \rightarrow \cdot E \$,\{\lambda\}$
$E \rightarrow \cdot E+T,\{\$\}$
$E \rightarrow \cdot T,\{\$\}$
$T \rightarrow \cdot \mid \mathrm{D},\{\$\}$

$E \rightarrow E+T \mid T$
$T \rightarrow I D \mid(E)$

Example

closure $\mathrm{I}(\{\mathrm{S} \rightarrow \cdot \mathrm{E} \$,\{\lambda\}\})=$
$\mathrm{S} \rightarrow \cdot \mathrm{E} \$,\{\lambda\}$
$\mathrm{E} \rightarrow \cdot \mathrm{E}+\mathrm{T},\{\$\}$
$\mathrm{E} \rightarrow \cdot \mathrm{T},\{\$\}$
$\mathrm{T} \rightarrow \cdot \mathrm{ID},\{\$\}$
$\mathrm{T} \rightarrow \cdot(\mathrm{E}),\{\$\}$

Example

	closurel ($\{\mathrm{S} \rightarrow \cdot \mathrm{E} \$,(\lambda\}\})=$
	$S \rightarrow \cdot E \Phi,\{\lambda\}$
$\begin{aligned} & S \rightarrow E \$ \\ & E \rightarrow E+T \mid T \\ & T \rightarrow I D \mid(E) \end{aligned}$	$\mathrm{E} \rightarrow \cdot \mathrm{E}+\mathrm{T},\{\$\}$
	$\mathrm{E} \rightarrow \cdot \mathrm{T},\{\$\}$
	$\mathrm{T} \rightarrow \cdot \mathrm{ID},\{\$\}$
	$\mathrm{T} \rightarrow \cdot(\mathrm{E}),\{\$\}$
	$\mathrm{E} \rightarrow \cdot \mathrm{E}+\mathrm{T},\{+\}$
	$\mathrm{E} \rightarrow \cdot \mathrm{T},\{+\}$

Thursday, August 30,12

Example

	closurel ($\{\mathrm{S} \rightarrow \cdot \mathrm{E} \$$, $\{\lambda\}\})=$
	$S \rightarrow \cdot E \Phi,\{\lambda\}$
$\begin{aligned} & S \rightarrow E \$ \\ & E \rightarrow E+T \mid T \\ & T \rightarrow \mathbb{I D} \mid(E) \end{aligned}$	$\mathrm{E} \rightarrow \cdot \mathrm{E}+\mathrm{T},\{\$\}$
	$\mathrm{E} \rightarrow \cdot \mathrm{T},\{\$\}$
	$\mathrm{T} \rightarrow \cdot \mathrm{ID},\{\$\}$
	$\mathrm{T} \rightarrow \cdot(\mathrm{E}),\{\$\}$
	$\mathrm{E} \rightarrow \cdot \mathrm{E}+\mathrm{T},\{+\}$
	$\mathrm{E} \rightarrow \cdot \mathrm{T},\{+\}$
	$\mathrm{T} \rightarrow \cdot \mathrm{ID},\{+\}$
	$\mathrm{T} \rightarrow \cdot(\mathrm{E}),\{+\}$

Building goto and action tables

- The function gotol (configuration-set, symbol) is analogous to goto0(configuration-set, symbol) for LR(0)
- Build goto table in the same way as for $\operatorname{LR}(0)$
- Key difference: the action table.
action $[s][x]=$
- reduce when • is at end of configuration and $x \in$ lookahead set of configuration
$A \rightarrow \alpha \cdot,\{\ldots \times \ldots\} \in s$
- shift when \bullet is before x
$A \rightarrow \beta \cdot x \gamma \in s$

Example

- Consider the simple grammar:

```
<program> -> begin <stmts> end $
<stmts> }->\mathrm{ SimpleStmt;<stmts>
<stmts> }->\mathrm{ begin <stmts> end ; <stmts>
<stmts> }->
```

<program> \rightarrow begin <stmts> end \$
<stmts> \rightarrow SimpleStmt;<stmts>
<stmts> \rightarrow begin <stmts> end ; <stmts> Example
<stmts> $\rightarrow \lambda$

- Parse: begin SimpleStmt ; SimpleStmt ; end \$

Step	Parse Stack	Remaining Input	Parser Action
1	0	begin S ; S ; end \$	Shift I
2	01	S;S ; end \$	Shift 5
3	015	$; \mathrm{S} ;$ end \$	Shift 6
4	0156	$\mathrm{~S} ;$ end \$	Shift 5
5	01565	$;$ end \$	Shift 6
6	015656	end \$	Reduce 4 (goto 10)
7	01565610	end \$	Reduce 2 (goto 10)
8	015610	end \$	Reduce 2 (goto 2)
9	012	end \$	Shift 3
10	0123	\$	Accept

Thursday, August 30,12

Solutions to the size problem

- Different parser schemes
- SLR (simple LR): build an CFSM for a language, then add lookahead wherever necessary (i.e., add lookahead to resolve shift/reduce conflicts)
- What should the lookahead symbol be?
- To decide whether to reduce using production $\mathrm{A} \rightarrow$ α, use Follow(A)
- LALR: merge LR states in certain cases (we won't discuss this)

[^0]: Match token

[^1]: Thursday, August 30,12

