
Scanners

Monday, August 27, 12

Scanners

• Sometimes called lexers

• Recall: scanners break input stream up into a set of tokens

• Identifiers, reserved words, literals, etc.

• What do we need to know?

• How do we define tokens?

• How can we recognize tokens?

• How do we write scanners?

Monday, August 27, 12

Regular expressions
• Regular sets: set of strings defined by regular expressions

• Strings are regular sets (with one element): purdue 3.14159

• So is the empty string: λ (sometimes use ɛ instead)

• Concatentations of regular sets are regular: purdue3.14159

• To avoid ambiguity, can use () to group regexps together

• A choice between two regular sets is regular, using |: (purdue|3.14159)

• 0 or more of a regular set is regular, using *: (purdue)*

• Some other notation used for convenience:

• Use Not to accept all strings except those in a regular set

• Use ? to make a string optional: x? equivalent to (x|λ)

• Use + to mean 1 or more strings from a set: x+ equivalent to xx*

• Use [] to present a range of choices: [1-3] equivalent to (1|2|3)

Monday, August 27, 12

Examples of regular expressions

• Numbers: D = [0-9]+

• Words: L = [A-Za-z]+

• Literals (integers or floats): -?D+(.D*)?

• Identifiers: (_|L)(_|L|D)*

• Comments (as in Micro): -- Not(\n)*\n

• More complex comments (delimited by ##, can use # inside
comment): ##((#|λ)Not(#))*##

Monday, August 27, 12

Finite automata
• Finite state machine which will only accept a string if it is in

the set defined by the regular expression

(a b c+)+

a b c

a

c start state transition state final state

Monday, August 27, 12

λ transitions
• Transitions between states that aren’t triggered by seeing

another character

• Can optionally take the transition, but do not have to

• Can be used to link states together

λ

Monday, August 27, 12

Non-deterministic FA

• Note that if a finite automaton has a λ-transition in it, it
may be non-deterministic (do we take the transition? or not?)

• More precisely, FA is non-deterministic if, from one state
reading a single character could result in transition to
multiple states

• How do we deal with non-deterministic finite automata
(NFAs)?

Monday, August 27, 12

“Running” an NFA

• Intuition: take every possible path through an NFA

• Essentially, parallel execution of NFA

• Maintain a “pointer” that tracks the current state

• Every time there is a choice, “split” the pointer, and have
one pointer follow each choice

• Track each pointer simultaneously

• If a pointer gets stuck, stop tracking it

• If any pointer reaches an accept state at the end of
input, accept

Monday, August 27, 12

Example
• How does this NFA handle the string “aba”?

1 2

43

5λ a

a, b

aa

b

Monday, August 27, 12

a

λ

A B
λλ

A

B

λ

λ

λ

λ

A
λ

λ

λ

Expression FA

a

λ
AB

A|B

A*

Building a FA from a regexp

Mini-exercise: how do we build an FA that accepts Not(A)?

Monday, August 27, 12

NFAs to DFAs
• Can convert NFAs to deterministic finite automata (DFAs)

• No choices — never a need to “split” pointers

• Initial idea: simulate NFA for all possible inputs, any time there is
a new configuration of pointers, create a state to capture it

• Pointers at states 1, 3 and 4 → new state {1, 3, 4}

• Trying all possible inputs is impractical; instead, for any new
state, explore all possible next states (that can be reached with a
single character)

• Process ends when there are no new states found

• Algorithm on page 82 of textbook

• This can result in very large DFAs!

Monday, August 27, 12

Example
• Convert the following into a DFA

1 2

43

5λ a

a, b

aa

b

Monday, August 27, 12

DFA reduction
• DFAs built from NFAs are not necessarily optimal

• May contain many more states than is necessary

(ab)+ ≡ (ab)(ab)*

a b a

b

Monday, August 27, 12

DFA reduction
• DFAs built from NFAs are not necessarily optimal

• May contain many more states than is necessary

(ab)+ ≡ (ab)(ab)*

a b

a

Monday, August 27, 12

DFA reduction

• Intuition: merge equivalent states

• Two states are equivalent if they have the same
transitions to the same states

• Basic idea of optimization algorithm

• Start with two big nodes, one representing all the final
states, the other representing all other states

• Successively split those nodes whose transitions lead to
nodes in the original DFA that are in different nodes in
the optimized DFA

• See algorithm on page 85 of textbook

Monday, August 27, 12

Example
• Simplify the following

1 2 3

5 6

4

7

a

d

b c

b c

Monday, August 27, 12

Transition tables
• Table encoding states and transitions of FA

• 1 row per state, 1 column per possible character

• Each entry: if automaton in a particular state sees a
character, what is the next state?

State
CharacterCharacterCharacter

State
a b c

1 2

2 3

3 4

4 2 4

1 42 3a b c

a

c start state transition state final state

Monday, August 27, 12

Finite automata program
• Using a transition table, it is straightforward to write a

program to recognize strings in a regular language

state = initial_state; //start state of FA
while (true) {
 next_char = getc();
 if (next_char == EOF) break;
 next_state = T[state][next_char];
 if (next_state == ERROR) break;
 state = next_state;
}
if (is_final_state(state))
 //recognized a valid string
else
 handle_error(next_char);

Monday, August 27, 12

Alternate implementation
• Here’s how we would implement the same program

“conventionally”
next_char = getc();
while (next_char == ‘a’) {
 next_char = getc();
 if (next_char != ‘b’) handle_error(next_char);
 next_char = getc();
 if (next_char != ‘c’) handle_error(next_char);
 while (next_char == ‘c’) {
 next_char = getc();
 if (next_char == EOF) return; //matched token
 if (next_char == ‘a’) break;
 if (next_char != ‘c’) handle_error(next_char);
 }
}
handle_error(next_char);

Monday, August 27, 12

Transducers
• Simple extension of a FA

which also outputs the
recognized string

• Recognized characters
are output; everything
else is discarded

• Annotate transitions:

• T(x): “toss” x

• x: “save” x

• Example: DFA to
recognize comments and
“if” token

T(-) T(-) T(\n)

T(Not(\n)
I

F

Monday, August 27, 12

Example: Transducer for strings

• Recognize quoted strings

• Can use double quotation
marks (“”) within string to
produce a quotation mark

• (“ (Not(”) | “”)* ”)

• Examples:

• “ECE 468”

➡ ECE 468

• “Scanning is ““fun”” ”

➡ Scanning is “fun”

T(")

Not(")

T(")"

Monday, August 27, 12

Practical Consderations
Or: what do I have to worry about if I’m

actually going to write a scanner?

Monday, August 27, 12

Handling reserved words

• Keywords can be written as regular expressions. However,
this leads to a big blowup in FA size

• Consider writing a regular expression that accepts
identifiers which cannot be if, while, do, for, etc.

• Usually better to specify reserved words as “exceptions”

• Capture them using the identifier regexp, and then
decide if the token corresponds to a reserved word

Monday, August 27, 12

Generating symbol table entries

• In simple languages, the scanner can build the symbol table
directly

• In more complex languages, with complicated scoping
rules, this needs to be handled by the parser

Monday, August 27, 12

Lookahead

• Up until now, we have only considered matching an entire
string to see if it is in a regular language

• What if we want to match multiple tokens from a file?

• Distinguish between int a and inta

• We need to look ahead to see if the next character
belongs to the current token

• If it does, we can continue

• If it doesn’t, the next character becomes part of the next
token

Monday, August 27, 12

Multi-character lookahead
• Sometimes, a scanner will need to look ahead more than one

character to distinguish tokens

• Examples

• Fortran: DO I = 1,100 (loop) vs. DO I = 1.100 (variable
assignment)

• Pascal: 23.85 (literal) vs. 23..85 (range)

• 2 solutions: Backup or special “action” state

D . D

D D

Monday, August 27, 12

D . D

D D

.

Multi-character lookahead
• Sometimes, a scanner will need to look ahead more than one

character to distinguish tokens

• Examples

• Fortran: DO I = 1,100 (loop) vs. DO I = 1.100 (variable
assignment)

• Pascal: 23.85 (literal) vs. 23..85 (range)

• 2 solutions: Backup or special “action” state

Monday, August 27, 12

General approach
• Remember states (T) that can be final states

• Buffer the characters from then on

• If stuck in a non-final state, back up to T, restore buffered
characters to stream

• Example: 12.3e+q

1 2 . 3 e + qinput stream

FA processing T Error!

Monday, August 27, 12

Why can’t we do this?

• Just build an FA which recognizes the string

D+(λ |.D+)(. | ..)D+(λ |.D+) and recognize the final state
we are in to determine the token type?

• Note that this will recognize tokens of the form 12.3 and
12..3

Monday, August 27, 12

Error Recovery

• What do we do if we encounter a lexical error (a character
which causes us to take an undefined transition)?

• Two options

• Delete all currently read characters, start scanning from
current location

• Delete first character read, start scanning from second
character

• This presents problems with ill-formatted strings
(why?)

• One solution: create a new regexp to accept runaway
strings

Monday, August 27, 12

Scanner Generators

Monday, August 27, 12

Scanner generators

• Essentially, tools for converting regular expressions into
finite automata

• Two well-known tools

• ScanGen: a scanner generator that produces transition
tables for a finite automaton driver program (as we saw
earlier)

• Lex: generates a scanner directly, makes use of user-
written “filter” functions to output tokens

Monday, August 27, 12

ScanGen

• User defines the input to ScanGen using a file with three
sections:

• Options : ScanGen settings for table optimization, etc.

• Character classes : define sets of characters (e.g., digits)

• Token definitions :

• Token name { minor major } = regexp

• Can include “except” clauses to simplify regexps

• Can “toss” parts of regexps

• Sample ScanGen input (for Micro language): page 61 of
textbook

Monday, August 27, 12

ScanGen driver

• Driver routine provides the actual scanner, which will be
called by the parser

• Reads input character stream, drives the finite automaton
using the table generated by ScanGen, and returns found
tokens

void scanner(codes *major,
 codes *minor,
 char *token_text)

Monday, August 27, 12

ScanGen tables

• ScanGen produces two tables:

• State table: next_state[NUM_STATES][NUM_CHARS]

• Encodes transition table

• Action table: action[NUM_STATES][NUM_CHARS]

• Tells the driver when a complete token is recognized
(i.e., defines accepting states), and what to do with the
“lookahead” character

Monday, August 27, 12

Actions
• Action table has 6 possible values

• ERROR: scan error

• MOVEAPPEND: add next character to token string and continue

• MOVENOAPPEND: “toss” next character and continue

• HALTAPPEND: add next character to token string and return it
(final state)

• HALTNOAPPEND: “toss” next character and return token (final
state)

• HALTREUSE: put next character back on to input and return token
(final state)

• Question: Why no “MOVEREUSE” state?

• Driver program on pages 65–66 of textbook

Monday, August 27, 12

Lex (Flex)
• Commonly used Unix scanner generator (superseded by Flex)

• Has character classes and regular expressions like ScanGen but some
key differences:

• After each token is matched, calls user-defined “filter” function,
which processes identified token before returning it to parser

• Hence, no “Toss” facility (why?)

• No exception list

• Instead, supports matching multiple regexps.

• Matches longest token (i.e., doesn’t think ifa is IF ID(a))

• In case of tie, returns earliest-defined regexp

• To treat if as a reserved word instead of an identifier,
define token IF before defining identifiers.

Monday, August 27, 12

Lex operation

Parser

yylex() filter
functions

may set
global variables

lex
definitions lex

input

lex
generator

calls

defines

generates

calls

Scanner

program

input

Example of Lex input on page 67 of textbook

Monday, August 27, 12

Next Time

• We’ve covered how to tokenize an input program

• But how do we decide what the tokens actually say?

• How do we recognize that

IF ID(a) OP(<) ID(b) { ID(a) ASSIGN LIT(5) ; }

is an if-statement?

• Next time: Parsers

Monday, August 27, 12

