Scanners

Monday, August 27, 12

Regular expressions

® Regular sets: set of strings defined by regular expressions
® Strings are regular sets (with one element): purdue 3.14159
® Sois the empty string: A (sometimes use € instead)
® Concatentations of regular sets are regular: purdue3.|4159
e To avoid ambiguity, can use () to group regexps together
® A choice between two regular sets is regular, using |: (purdue|3.14159)
® 0 or more of a regular set is regular, using *: (purdue)*
® Some other notation used for convenience:
® Use Not to accept all strings except those in a regular set
® Use ? to make a string optional: x? equivalent to (x|\)
® Use + to mean | or more strings from a set: x+ equivalent to xx*

® Use [] to present a range of choices: [|-3] equivalent to (1[2|3)

Scanners

® Sometimes called lexers

® Recall: scanners break input stream up into a set of tokens
® [dentifiers, reserved words, literals, etc.

® What do we need to know!
® How do we define tokens?
® How can we recognize tokens?

® How do we write scanners?

Monday, August 27, 12

Finite automata

® Finite state machine which will only accept a string if it is in
the set defined by the regular expression

(abct)+

A
f [X

/ | \ 7/
start state final state

Monday, August 27, 12

Examples of regular expressions

® Numbers: D = [0-9]+
® Words: L = [A-Za-z]+

® Literals (integers or floats): -’D+(.D*

® Identifiers: (_|L)(_|L|D)*
e Comments (as in Micro): -- Not(\n)*\n

® More complex comments (delimited by ##, can use # inside
comment): ##((#|\)Not(#)) “##

Monday, August 27, 12

Monday, August 27, 12

A\ transitions

® Transitions between states that aren’t triggered by seeing
another character

® Can optionally take the transition, but do not have to

® Can be used to link states together

Monday, August 27, 12

Non-deterministic FA

® Note that if a finite automaton has a A-transition in it, it
may be non-deterministic (do we take the transition? or not?)

® More precisely, FA is non-deterministic if, from one state
reading a single character could result in transition to
multiple states

® How do we deal with non-deterministic finite automata
(NFAs)?

“Running” an NFA

® Intuition: take every possible path through an NFA
® Essentially, parallel execution of NFA
® Maintain a “pointer” that tracks the current state

® Every time there is a choice, “split” the pointer, and have
one pointer follow each choice

® Track each pointer simultaneously
® |f a pointer gets stuck, stop tracking it

® |If any pointer reaches an accept state at the end of
input, accept

Monday, August 27, 12

Example

® How does this NFA handle the string “aba”?

Monday, August 27, 12

Building a FA from a regexp

Expression FA

ENeEe)
OO0
A8 (OO=OHO-ORO

N C=0A
AlB Ol

Monday, August 27, 12

NFAs to DFAs

® Can convert NFAs to deterministic finite automata (DFAs)
® No choices — never a need to “split” pointers

® |Initial idea: simulate NFA for all possible inputs, any time there is
a new configuration of pointers, create a state to capture it

® Pointers at states |,3 and 4 = new state {l, 3,4}

® Trying all possible inputs is impractical; instead, for any new
state, explore all possible next states (that can be reached with a
single character)

® Process ends when there are no new states found
® Algorithm on page 82 of textbook

® This can result in very large DFAs!

Monday, August 27, 12

Example

® Convert the following into a DFA
OO0
a -/
a,b
‘ % ’— b

Monday, August 27, 12

Monday, August 27, 12

DFA reduction

® DFAs built from NFAs are not necessarily optimal

® May contain many more states than is necessary

(ab)+ = (ab)(ab)*

O OGO

DFA reduction

® DFAs built from NFAs are not necessarily optimal

® May contain many more states than is necessary

(ab)+ = (ab)(ab)*

a

(e s

Monday, August 27, 12

DFA reduction

® Intuition: merge equivalent states

® Two states are equivalent if they have the same
transitions to the same states

® Basic idea of optimization algorithm

® Start with two big nodes, one representing all the final
states, the other representing all other states

® Successively split those nodes whose transitions lead to
nodes in the original DFA that are in different nodes in
the optimized DFA

® See algorithm on page 85 of textbook

Monday, August 27, 12

Example

OGO O 0
(-0

Monday, August 27, 12

Transition tables

® Table encoding states and transitions of FA
® | row per state, | column per possible character

® Each entry: if automaton in a particular state sees a
character, what is the next state?

Character
State a
a b ¢
| 2

2 } _>®— i ® -’@_ o
N
! /

/

1
3 4 / | \

. z P sansae] [vanston] [simel [masige] \¢

-

Monday, August 27, 12

Finite automata program

® Using a transition table, it is straightforward to write a
program to recognize strings in a regular language

state = initial_state; //start state of FA
while (true) {

next_char = getc();

if (next_char == EOF) break;

next_state = T[state][next_char];

if (next_state == ERROR) break;

state = next_state;

if (is_final_state(state))
//recognized a valid string
else
handle_error(next_char);

Monday, August 27, 12

Monday, August 27, 12

Alternate implementation

® Here’s how we would implement the same program
“conventionally”
next_char = getc();
while (next_char == ‘a’) {
next_char = getc(Q);
if (next_char != ‘b’) handle_error(next_char);
next_char = getc(Q);
if (next_char != ‘c’) handle_error(next_char);
while (next_char == ‘c’) {
next_char = getc(Q);
if (next_char == EOF) return; //matched token
if (next_char == ‘a’) break;
if (next_char != ‘c’) handle_error(next_char);
}
}

handle_error(next_char);

Transducers

e Simple extension of a FA
which also outputs the
recognized string

® Recognized characters
are output; everything o 0 Ty
else is discarded
I
'

® Annotate transitions:

® T(x):“toss” x O_ F _.©

® x:‘“save” x

T(Not(w)

e Example: DFA to
recognize comments and
“if” token

Monday, August 27, 12

Example: Transducer for strings

® Recognize quoted strings

® Can use double quotation Not(")

marks (“”) within string to
produce a quotation mark
® (“(Not(") |*)*”) —»O- ()
® Examples: 7
o “ECE 468" IO
J
= ECE 468

3999 99

® “Scanning is ““fun

= Scanning is “fun”

Monday, August 27, 12

Practical Consderations

Or: what do | have to worry about if I'm
actually going to write a scanner?

Monday, August 27, 12

Handling reserved words

® Keywords can be written as regular expressions. However,
this leads to a big blowup in FA size

® Consider writing a regular expression that accepts
identifiers which cannot be if, while, do, for, etc.

® Usually better to specify reserved words as “exceptions”

® Capture them using the identifier regexp, and then
decide if the token corresponds to a reserved word

Monday, August 27, 12

Generating symbol table entries

® |n simple languages, the scanner can build the symbol table
directly

® In more complex languages, with complicated scoping
rules, this needs to be handled by the parser

Monday, August 27, 12

Monday, August 27, 12

Lookahead

® Up until now, we have only considered matching an entire
string to see if it is in a regular language

® What if we want to match multiple tokens from a file?
® Distinguish between int aand inta

® We need to look ahead to see if the next character
belongs to the current token

® If it does, we can continue

® [f it doesn’t, the next character becomes part of the next
token

Multi-character lookahead

® Sometimes, a scanner will need to look ahead more than one
character to distinguish tokens

® Examples

® Fortran:DO | = 1,100 (loop) vs. DO | = 1.100 (variable
assignment)

® Pascal: 23.85 (literal) vs. 23..85 (range)
) D
>O D —| »O_ D—|

® 2 solutions: Backup or special “action” state

Monday, August 27, 12

Multi-character lookahead

® Sometimes, a scanner will need to look ahead more than one
character to distinguish tokens

® Examples

® Fortran:DO | = 1,100 (loop) vs. DO | = 1.100 (variable
assignment)

® Pascal: 23.85 (literal) vs. 23..85 (range)

o H

® 2 solutions: Backup or special “action” state

Monday, August 27, 12

General approach

® Remember states (T) that can be final states
® Buffer the characters from then on

® [f stuck in a non-final state, back up to T, restore buffered
characters to stream

® Example: 2.3e+q

| 2 .3 e + q

T Error!

Monday, August 27, 12

Why can’t we do this?

® Just build an FA which recognizes the string

D+(A\ |.D+)(.| ..)D+(A |.D+) and recognize the final state
we are in to determine the token type?

® Note that this will recognize tokens of the form [2.3 and
12.3

Monday, August 27, 12

Monday, August 27, 12

Error Recovery

® What do we do if we encounter a lexical error (a character
which causes us to take an undefined transition)?

® Two options

® Delete all currently read characters, start scanning from
current location

® Delete first character read, start scanning from second
character

® This presents problems with ill-formatted strings
(why?)

® One solution: create a new regexp to accept runaway
strings

Monday, August 27, 12

Scanner Generators

Scanner generators

® Essentially, tools for converting regular expressions into
finite automata

® Two well-known tools

® ScanGen:a scanner generator that produces transition
tables for a finite automaton driver program (as we saw
earlier)

® |ex:generates a scanner directly, makes use of user-
written “filter” functions to output tokens

Monday, August 27, 12

ScanGen

® User defines the input to ScanGen using a file with three
sections:

® Options : ScanGen settings for table optimization, etc.
® Character classes : define sets of characters (e.g., digits)
® Token definitions :
® Token name { minor major } = regexp
® Can include “except” clauses to simplify regexps
® Can “toss” parts of regexps

® Sample ScanGen input (for Micro language): page 61 of
textbook

Monday, August 27, 12

ScanGen driver

® Driver routine provides the actual scanner, which will be
called by the parser

void scanner(codes *major,
codes *minor,
char *token_text)

® Reads input character stream, drives the finite automaton
using the table generated by ScanGen, and returns found
tokens

Monday, August 27, 12

ScanGen tables

® ScanGen produces two tables:
® State table: next_state[NUM_STATES][NUM_CHARS]
® Encodes transition table
® Action table: action[NUM_STATES][NUM_CHARS]

® Tells the driver when a complete token is recognized
(i.e., defines accepting states), and what to do with the
“lookahead” character

Monday, August 27, 12

Monday, August 27, 12

Actions

® Action table has 6 possible values
® ERROR:scan error
® MOVEAPPEND: add next character to token string and continue
o MOVENOAPPEND:"toss” next character and continue

® HALTAPPEND:add next character to token string and return it
(final state)

o HALTNOAPPEND:"“toss” next character and return token (final
state)

® HALTREUSE: put next character back on to input and return token
(final state)

® Question:Why no “MOVEREUSE” state!

® Driver program on pages 65-66 of textbook

Monday, August 27, 12

Lex (Flex)

® Commonly used Unix scanner generator (superseded by Flex)

® Has character classes and regular expressions like ScanGen but some
key differences:

® After each token is matched, calls user-defined “filter” function,
which processes identified token before returning it to parser

® Hence, no “Toss” facility (why?)
® No exception list
® |Instead, supports matching multiple regexps.
® Matches longest token (i.e., doesn’t think ifais IF ID(Ca))
® |n case of tie, returns earliest-defined regexp

® Totreat if as a reserved word instead of an identifier,
define token IF before defining identifiers.

Monday, August 27, 12

Next Time

® We've covered how to tokenize an input program
® But how do we decide what the tokens actually say?
® How do we recognize that
IF ID(a) OP(<) ID(b) { ID(a) ASSIGN LIT(5) ;}
is an if-statement?

® Next time: Parsers

Lex operation

defines lex

input
@ filter

@ functions

/

calls
may set
global variables

Example of Lex input on page 67 of textbook

Scanner

Monday, August 27, 12

Monday, August 27, 12

