What is a compiler?

What is a compiler?

® Traditionally: Program that analyzes and translates from a
high level language (e.g., C++) to low-level assembly
language that can be executed by hardware

int a,

b;

var
var
mov a
mov rl
cmpl a rl
jge 1 e

mov 2 b
Jjmp 1 d

> W oW

: mov 3 b

sdone

Wednesday, August 22, 12

Compilers are translators

* Fortran

. C ¢ Machine code

e C++ ¢ Virtual machine code

. Java ¢ Transformed source

» Text processing translate code
language) ¢ Augmented source

- HTML/XML code

. Command & ¢ Low-level commands
Scripting ¢ Semantic
Languages components

* Natural language ¢ Another language

* Domain specific
languages

Wednesday, August 22, 12

Compilers are optimizers

® (Can perform optimizations to make a program more
efficient

int

a, b,
a + 3;
a + 3;

var a
var b var a
var c var b
mov a rl var c
addi 3 r&.E:£:>>mov a rl
mov rl b addi 3 ril
mov a r2 mov rl b
addi 3 r2 mov rl c

mov r2 cC

Wednesday, August 22, 12

Why do we need compilers?

® Compilers provide portability

e Old days: whenever a new machine was built, programs had to be
rewritten to support new instruction sets

® [BM System/360 (1964): Common Instruction Set Architecture
(ISA) — programs could be run on any machine which
supported [SA

® Common ISA is a huge deal (note continued existence of
x86)

® But still a problem: when new ISA is introduced (EPIC) or new
extensions added (x86-64), programs would have to be rewritten

® Compilers bridge this gap: write new compiler for an ISA, and
then simply recompile programs!

Wednesday, August 22, 12

Why do we need compilers? (ll)

® Compilers enable high performance and productivity

® Old: programmers wrote in assembly language, architectures
were simple (no pipelines, caches, etc.)

® (Close match between programs and machines — easier
to achieve performance

® New: programmers write in high level languages (Ruby,
Python), architectures are complex (superscalar, out-of-
order execution, multicore)

® Compilers are needed to bridge this semantic gap

® Compilers let programmers write in high level languages
and still get good performance on complex architectures

Wednesday, August 22, 12

Semantic Gap

def 1index
@posts = Post.find(:all)

respond_to do |formatl|
format.html # index.html.erb

Snippet of Ruby-on-rails

format.xml { render :xml => code
@posts }
end
end
Branch
O — Prediction
Icache | T]
can n
s ‘Fasq;)ath]Mi?roco?o Engine
| COREY COREZ CORES OO .;o;-"‘- : : : B
AMD Barcelona i) mmm L1 [lnstruction Control Unit (72 entrlesﬂ
. s S Dcache| s ——
architecture 64KB | < b
; [Int Decode & Rename| [FP Decoco:&; Rename]
44-entry| [Fs) (5] [Res] [6-entry FP scheduie]
Load/) —— o4 : ' ' , .
Store [Tl Tl fou| con men Do
Queue MULT]

Wednesday, August 22, 12

Semantic Gap

def 1index
@posts = Post.find(:all)

respond_to do |formatl|

format.html # index.html.erb
format.xml { render :xml =>

@posts }

end
end
Branch
Prediction
64KB Scan/Align |

Fastpath |Microcode Engine|
' ' : | ’

1

B —

a r 1 . CORE) CORE2Z CORE3 CO® OPs
: m m m m J L] .
D Barcelona e =l L e 5 L1h Instruction Control Unit (72 entries)
' - N . : cache 4 I | i
- -‘ 64KB | < [——

architecture

2 2 2 1
; [Int Decode & Rename| [FP Decoge & Renamel

]]]
44-entry| [Res] [Res] [Res] [36-enty FP scheduled

Load/ ' ' 2 : ' :
<{AGU |=—{AGU[—{AGU| FADD FMuL FMIS¢
ad 1

K~ ALU +— ALU | ALU

Wednesday, August 22, 12

Some common compiler types

|. High level language = assembly language (e.g., gcc)

2. High level language = machine independent bytecode (e.g.,

javac)

3. Bytecode = native machine code (e.g., java’s JIT compiler)

4. High level language = high level language (e.g., domain

specific languages, many research languages—including
mine!)

Wednesday, August 22, 12

HLL to Assembly

Machine

Program |=Compiler=+ Assembly [=Assembler®

® Compiler converts program into assembly

® Assembler is machine-specific translator which converts
assembly into machine code

add $7 $8 $9 ($7 = $8 + $9) = 000000 00111 01000 01001 00000 100000

® Conversion is usually one-to-one with some exceptions
® Program locations

® Variable names

Wednesday, August 22, 12

HLL to Bytecode

Program [=Compiler=+| Bytecode [=Interpreter®| Execute!

® Compiler converts program into machine independent
bytecode

® e.g,javac generates Java bytecode, C# compiler generates
CIL

® Interpreter then executes bytecode “on-the-fly”

® Bytecode instructions are “executed” by invoking methods
of the interpreter, rather than directly executing on the
machine

® Aside: what are the pros and cons of this approach!?

Wednesday, August 22, 12

Bytecode to Assembly

Machine

Program = Compiler—=» Bytecode =JIT Comp.# =~

® Compiler converts program into machine independent
bytecode

® e.g.,javac generates Java bytecode, C# compiler
generates CIL

® Just-in-time compiler compiles code while program executes
to produce machine code

® s this better or worse than a compiler which generates
machine code directly from the program?

Wednesday, August 22, 12

Structure of a Compiler

Scanner

® Compiler starts by seeing only program text

Wednesday, August 22, 12

Scanner

® Compiler starts by seeing only program text

Wednesday, August 22, 12

® Compiler starts by seeing only program text

Scanner

® Scanner converts program text into string of tokens

4 4

[

l\nl

l(l lal

l\tl

lbl

l<l

I — 7

l4l l)l

151

Wednesday, August 22, 12

Scanner

® Compiler starts by seeing only program text

® Scanner converts program text into string of tokens

CO-CO-Coa)-Cr-em)-C
OO

® But we still don’t know what the syntactic structure of the
program is

Wednesday, August 22, 12

Parser

® Converts string of tokens into a parse tree or an abstract
syntax tree.

® (Captures syntactic structure of code (i.e.,“this is an if
statement, with a then-block”)

OO
OO

Wednesday, August 22, 12

Parser

® Converts string of tokens into a parse tree or an abstract
syntax tree.

® (Captures syntactic structure of code (i.e.,“this is an if
statement, with a then-block™)

— ths -

if-stmt

- \nS

stmt_list ~| assign_stmt

e~

ths -

Wednesday, August 22, 12

Semantic actions

® |nterpret the semantics of syntactic constructs

® Note that up until now we have only been concerned
with what the syntax of the code is

® What’s the difference!?

Wednesday, August 22, 12

Syntax vs. Semantics

® Syntax:‘‘grammatical” structure of language
® What symbols, in what order, is a legal part of the language?

® But something that is syntactically correct may mean
nothing!

® “colorless green ideas sleep furiously”
® Semantics: meaning of language

® What does a particular set of symbols, in a particular order,
mean?

® What does it mean to be an if statement!?

® ‘“evaluate the conditional, if the conditional is true, execute
the then clause, otherwise execute the else clause”

Wednesday, August 22, 12

A note on semantics

® How do you define semantics!?
® Static semantics: properties of programs
® All variables must have a type
® Expressions must use consistent types
® Can define using attribute grammars
® Execution semantics: how does a program execute!

® Can define an operational or denotational semantics for a
language

® Well beyond the scope of this class!

® For many languages, “the compiler is the specification”

Wednesday, August 22, 12

Semantic actions

® Actions taken by compiler based on the semantics of
program statements

® Building a symbol table

® Generating intermediate representations

Wednesday, August 22, 12

Symbol tables

® A list of every declaration in the program, along with other

information

® Variable declarations: types, scope

® Function declarations: return types, # and type of

arguments

) Symbol Table

Program Example
Integer ii;

ii = 3.5:

print ii;

Name Type Scope
> int global

Wednesday, August 22, 12

Intermediate representation

® Also called IR

® A (relatively) low level representation of the program
® But not machine-specific!

® One example: three address code

bge a, 4, done
mov 5, b
done: //done!

® Each instruction can take at most three operands
(variables, literals, or labels)

® Note: no registers!

Wednesday, August 22, 12

Optimizer

® Transforms code to make it more efficient
e Different kinds, operating at different levels
® High-level optimizations
® Loop interchange, parallelization
® Operates at level of AST, or even source code
® Scalar optimizations
® Dead code elimination, common sub-expression elimination
e Operates on IR
® |ocal optimizations
e Strength reduction, constant folding

® Operates on small sequences of instructions

Wednesday, August 22, 12

Code generation

® (Generate assembly from intermediate representation

® Select which instructions to use

® Schedule instructions

® Decide which registers to use

done:

bge a,
mov 5,
//done!

4,
b

done Il:

done:

1d a, rl
mov 4, r2
cmp rl, r2
bge done
mov 5, r3
st r3, b

Wednesday, August 22, 12

Code generation

® (Generate assembly from intermediate representation

® Select which instructions to use

® Schedule instructions

® Decide which registers to use

done:

bge a,
mov 5,
//done!

4,
b

done Il:

mov 4, rl

done:

1d a, r2
cmp rl, r2
blt done
mov 5, ril
st rl, b

Wednesday, August 22, 12

Overall structure of a compiler
I

Source code

: Use regular expressions to define tokens. Can then use scanner
Sca:mer generators such as lex or flex.
Tokens
Y ,
Sarsor Define language using context free grammars. Can then use parser
: generators such as yacc or bison.
Syntax tree
v
SRiTt?:;f Semantic routines done by hand. But can be formalized.
"
¥
Optimizer Written manually. Automation is an active research area (e.g.,
, dataflow analysis frameworks)
IR
v
Code Generation Written manually

Executable

'

Wednesday, August 22, 12

Overall structure of a compiler
I

Source code

!

Scanner

1
Tokens

¥

Parser

|
Syntax tree

L

Semantic
Routines

|
IR

¥

Optimizer

|
IR

L

Code Generation

Executable

'

Use regular expressions to define tokens. Can then use scanner
generators such as lex or flex.

Define language using context free grammar
generators such as yacc or hi

anually. Automation is an active research area (e.g.,
dataflow analysis frameworks)

Written manually

Wednesday, August 22, 12

Front-end vs. Back-end
|

® Scanner + Parser + Semantic actions + (high
level) optimizations called the front-end of a
compiler

® |R-level optimizations and code generation
(instruction selection, scheduling, register
allocation) called the back-end of a compiler

® Can build multiple front-ends for a particular

back-end

® eg,gcc & gtt, or many front-ends which
generate CIL

® Can build multiple back-ends for a particular
front-end

® e.g,gcc allows targeting different
architectures

Source code

Syntax tree

IR

¥

Optimizer

|
IR

¥

Code Generation

Executable

'

front
end

back
end

Wednesday, August 22, 12

Design considerations ()

® Compiler and language designs influence each other
® Higher level languages are harder to compile

® More work to bridge the gap between language and
assembly

® Flexible languages are often harder to compile

® Dynamic typing (Ruby, Python) makes a language very
flexible, but it is hard for a compiler to catch errors
(in fact, many simply won'’t)

Wednesday, August 22, 12

Design considerations (ll)

® Compiler design is influenced by architectures
® CISC vs.RISC

® CISC designed for days when programmers wrote in
assembly

® For a compiler to take advantage of string
manipulation instructions, it must be able to recognize
them

® RISC has a much simpler instruction model

® FEasier to compile for

Wednesday, August 22, 12

