
ECE 468 & 573 — Midterm 2
November 5, 2012

Name: ! ______________________________________

Purdue email: ! ______________________________________

Please sign the following:
I affirm that the answers given on this test are mine and mine alone. I did not receive
help from any person or material (other than those explicitly allowed).

 X ___

Part Points Score
1 10

2 30

3 40

4 20

Total 100

Part 1: Function calls and semantic actions (10 pts)

1) For the following function, show what the activation record for calling the
function would be, including both what the caller sets up and what the callee
sets up. Make the following assumptions: (i) the machine has four registers,
plus an FP register and an SP register, and all the registers are four bytes; (ii)
the program is using callee saves; (iii) the function doesn’t have any spilled
registers. Show the stack growing down (as in the notes). For each entry in the
activation record, show how many bytes that entry takes up. (7 pts)

double foo (double x, int y) {
	 double z;
	 z = x * y;
	 return z;
}

The most common mistake here was forgetting to
add space for z on the stack. That was worth 2 pts

2) Why do we distinguish between R-values and L-values when generating code?
(3 pts)

R-values are data and L-values are addresses. We must distinguish because when we
need to use a value in a temporary, we need to know whether to load from it, or whether
we can just use it directly

rest of stack

return val (8)

arg: x (8)

arg: y (4)

return address (4)

old frame ptr (4)

callee-saved regs
(16)

local: z (8)

Part 2: Register allocation (30 pts)

For the next 3 problems, consider the following code (assume this is the full
program):

! 1: A = 7
! 2: B = A + C
! 3: A = A + C
! 4: C = B + D
! 5: E = C + B
! 6: B = E + A
! 7: A = C + B
! 8: B = B + A
! 9: WRITE(A) //this counts as a use of A
! 10: WRITE(B) //this counts as a use of B

1) Show which variables are live after each instruction (assume nothing is live at
the end of the code) (10 pts) (1 pt each)

1 A, C, D

2 A, B, C, D

3 A, B, D

4 A, B, C

5 A, C, E

6 C, B

7 A, B

8 A, B

9 B

10 {}

2) Can any instructions be simplified with CSE? Which ones? (4 pts)

Yes: instruction 3 can be replaced with A = B (instruction 7 cannot, because B changes
in instruction 6)

3) Name (at least) two variables that could share the same register safely (1 pt)

D and E can share a variable (not live at the same time), or B and E.

4) Draw the interference graph for the code (5 pts)

C

B

E

A

D

Consider performing bottom up register allocation. For the following scenarios,
show what code needs to be generated for the given three-address-code
instruction and give the state of the registers after code generation (if a value in a
register is dirty, mark it with a *) If variables need to be spilled, always spill the
variable in the numerically lowest register first.

4) Before this instruction, the state of the registers is as follows:

R1 R2 R3

A B* C

a) What code is generated for !D = E + F where A, B, C and D are live after this
instruction (3 points)?

LOAD E, R1 //R1 can be freed immediately
ST R2, B //free R2
LOAD F, R2 //R2 can be freed immediately
R1 = R1 + R2 //reuse R1 because it was freed

b) What is the state of the registers after this code (2 points)?
R1 R2 R3

D* C

5) Before the instruction, the state of the registers is as follows:
R1 R2 R3

D* B* E

a) What code is generated for !A = B + E where A and D are live after this
instruction (3 points)?

ST R2, B
R2 = R2 + R3 //Reuse R2, free R3

b) What is the state of the registers after this code (2 points)?
R1 R2 R3

D* A*

Part 3: Instruction Scheduling (40 pts)

For the following problems, assume a machine that has 2 ALUs, 1 MU and 1 L/S
unit. The ALUs can execute ADDs with a single-cycle latency and SUBs with a
two-cycle latency. The MU can execute MULs with a 2 cycle latency and DIVs with
a three-cycle latency. LDs take two cycles, and occupy either ALU in the first
cycle and the L/S unit in the second. STs occupy the L/S unit for one cycle

1) Draw the reservation tables for the following instructions: LD, ST, ADD, SUB,
MUL, DIV (8 pts):

1 point per reservation table

LD: 2 reservation tables with an ALU occupied for one cycle and the LD/ST unit
occupied in the next
ST: reservation table with LD/ST unit occupied for one cycle
MUL: reservation table with MU occupied for two cycles
DIV: reservation table with MU occupied for three cycles
SUB: 2 reservation tables, with an ALU occupied for two cycles
ADD: 2 reservation tables, with an ALU occupied for one cycle

2) Draw the data-dependence graph for the following piece of code, including
latencies. Show the heights of each node in the graph (recall that the height of
an instruction with no dependent instructions is its latency) (10 pts):

! 1: LD A, R1; //Load A into R1
! 2: LD B, R2;
! 3: LD C, R3;
! 4: R4 = R2 * R1;
! 5: R5 = R1 + 7;
! 6: R6 = R5 - R3;
! 7: R7 = R1 / R4;
! 8: R8 = R6 + R4;
! 9: R9 = R7 + R8
! 10: ST R9, D;

Heights in brackets, latencies on edges.

1: LD A, R1 [9]2: LD B, R2 [9] 3: LD C, R3 [7]

4: R4 = R2 * R1 [7]

5: R5 = R1 + 7 [6]

6: R6 = R5 - R3 [5]

7: R7 = R1/R4 [5]8: R8 = R6 + R4 [3]

9: R9 = R7 + R8 [2]

10: ST R9, D [1]

2 2
2 2

2

2
1

22

1 3

1

1 pt per error, max of 2 pts for latency mistakes, 5 points for
height mistakes and 3 pts for dependence mistakes.

3) For each instruction above, show in which cycle it will be executed if we use
height-based list scheduling. If there is a tie in heights, give priority to the
instruction earlier in program order. Show your work in the table below (16
points)
Cycle ALU1 ALU2 MU LD/ST Inst(s) scheduled

1 1 1

2 2 1 1, 2

3 3 5 2 2, 3, 5

4 4 3 3, 4

5 6 4 4, 6

6 6 7 6, 7

7 8 7 7, 8

8 7 7

9 9 9

10 10 10

2 points per instruction

4) Assume that the MU is now fully pipelined. Give a short sequence of code (you
should not need more than two instructions—assume that all registers already
have useful values so loads are unnecessary) where having a fully pipelined
MU does not result in a faster schedule than the non-fully-pipelined MU. (6 pts)

Many possible solutions. The best way is to have an instruction that uses the MU, and a
second instruction that uses the result of the first instruction–the dependence keeps the
second instruction from executing until the first finishes, whether or not the MU is
pipelined.

Part 4: Loop optimizations (20 pts)

For the next 2 problems, consider the following code:

! 1: A = 2
! 2: B = 10
! 3: if (A < B) goto 9
! 4: E = B * B;
! 5: C = B * A + 2
! 6: D = E * A + B
! 7: if (C < D) goto 3
! 8: A = A + 1;
! 9: goto 3
! 10: A = E + B

1) Draw the control flow graph (basic-block level) for this code. Each node should
show all of the instructions for that basic block. (10 points)

A = 2
B = 10

E = B * B
C = B * A + 2
D = E * A + B
if (C < D) goto 3

A = A + 1
goto 3

A = E + B

if (A < B) goto 10

1 point for missing edges (or an edge between the last two basic blocks
2 points for splitting basic blocks that should be combined (e.g., the third and fourth
blocks)

2) Give the code that would be produced after performing both loop invariant
code motion and strength reduction. For partial credit, identify any loop
induction variable(s) and mutual induction variable(s). You do not have to do
test replacement. (10 points)

Instruction 4 is loop invariant, but cannot be moved, because E is live outside the loop
(if you move the instruction, then instruction 10 may do the wrong thing). I did not intend
to test this, so I did not take points off if E was moved. However, if you correctly did not
move E (and hence either did not perform strength reduction on D, or used some other
technique to correctly do it), I gave you two bonus points.

Induction variable: A (2 points)
Mutual induction variables: C, D (1 point)

If you demonstrated that you knew which variables were induction variables in your
code, I did not take off points for not explicitly stating that A was an induction variable
and C & D were mutual induction variables.

! 1: A = 2
! 2: B = 10
! 2a: C’ = B * A + 2 //1 point
! 2b: D’ = B * B * A + B //1 point
! 3: if (A < B) goto 9
! 4: E = B * B;
! 5: C = C’ //1 point
! 6: D = D’ //1 point
! 7: if (C < D) goto 3
! 8: A = A + 1;
! 8a: C’ = C’ + B //1 point
! 8b: D’ = D’ + E //1 point
! 9: goto 3
! 10: A = E + B

