
Announcements

• I’m back!

• Office Hours

• 11:30–12:30, Monday and Wednesday

• Also by appointment

• EE 324A

Tuesday, January 19, 2010

Static Single Assignment
(SSA)

Tuesday, January 19, 2010

Use-def chains

• Structure which shows, for
each use of a variable, which
definitions could reach it

• A use may be reached by
multiple definitions

• Example:

• a5 →

• b5 →

• a8 →

• Can also build def-use
chains

1: a = 7;
2: b = 2;
3: if (c)
4: b = 8;
5: d = a + b;
6: a = 9;
7: while (...) {
8: d = a + 1;
9: a = a + 1;
10:}

Tuesday, January 19, 2010

Calculating use-def chains

• Easy!

• Perform a reaching-definitions dataflow analysis

• At each variable use, look for definitions of that variable
that reach the statement

• Construct use-def chains

Tuesday, January 19, 2010

Why use-def chains?

• Capture dependence information

• Use-def chains represent flow of data through program

• Can speed up optimizations

• Consider constant propagation

Tuesday, January 19, 2010

Sparse constant propagation

• Consider what happens when a
variable gets updated during constant
propagation using worklist algorithm

• e.g., process x = 2; x moves from
⊥ → 2

• Put all successors of CFG node into
worklist

• But what if x isn’t used in immediate
successor nodes?

• Spend a lot of time propagating
data and processing nodes for no
reason

• Update of x only matters at last
node

x = 2

?

... ...

... ...

y = x

... ...

Tuesday, January 19, 2010

x = 2

?

... ...

... ...

y = x

... ...

Using use-def chains
• Instead of propagating data along CFG

edges, what if we just propagate data
along use-def edges?

• When x is updated, propagate data
directly to last node, bypassing all the
intermediate nodes!

• Can we run same CP algorithm?

• Originally initialize with just start
node. No uses of definitions →
Algorithm terminates early

• Need to change initialization: Add all
statements with constant RHS to
initial worklist

• Upshot: original CP algorithm O(EV2);
sparse algorithm O(N2V)

• N is number of CFG nodes

Tuesday, January 19, 2010

Problems with u/d chains

• Can be very expensive to
represent

• CFG with N nodes can have
N2 u/d chains

• Each use can have multiple
definitions associated with it

• Can make it difficult to keep
u/d information accurate as
optimizations are performed
and code is transformed

• Multiple defs can make
optimizations harder (will see
this when we return to CP)

x = ... x = ... x = ... x = ...

... = x ... = x ... = x ... = x

?

Tuesday, January 19, 2010

Solution: SSA

• Static Single Assignment form

• Compact representation of use/def information

• Key feature: No variable is defined more than once (single
assignment)

• Eliminates anti/output dependences → more
optimizations possible

• SSA enables more efficient versions of optimizations

• Used in many compilers

• e.g., LLVM

Tuesday, January 19, 2010

• Each assignment to a variable is given a unique name

• All of the uses reached by that assignment are renamed to
match

• Easy for straight line code:

SSA for straight line code

a = 4;
... = a + 5;
a = 7;
... = a + 6;

a1 = 4;
... = a1 + 5;
a2 = 7;
... = a2 + 6;

Tuesday, January 19, 2010

SSA for control flow
• Easy when only one definition reaches a use

• What do we do for code with branches/loops?

• Multiple definitions reach a single use

if (...)

x = 5 x = 7

y = x

Tuesday, January 19, 2010

φ functions
• Dummy function that represents merging of two values

• Part of IR, but not actually emitted as code

• Inserted at merge points to combine two definitions into
one

if (...)

x_1 = 5 x_2 = 7

x_3 = ! (x_1, x_2)

y = x_3

Tuesday, January 19, 2010

Loops
• How would you put this loop into SSA form?

x = 1

x = x + 1

Tuesday, January 19, 2010

Loops
• How would you put this loop into SSA form?

x = 1

x = x + 1

x_1 = 1

x_3 = !(x_1, x_2)

x_2 = x_3 + 1

Tuesday, January 19, 2010

Converting to SSA form

• Two steps to convert a program to SSA form

• φ function placement

• Where do we place the φ functions?

• Variable renaming

• Rename variable definitions and uses to satisfy single-
assignment property

Tuesday, January 19, 2010

φ function placement
• Need to place φ functions wherever two definitions of a

variable might merge

• Safe: place a φ function at every join point in CFG

• Clearly too many functions 1.

2. X = 7.

3. 4. 8. X = 9. X =

10.5.

6.

Tuesday, January 19, 2010

φ function placement
• Condition:

• If ∃ CFG nodes X, Y, Z such that there are paths X →+ Z
and Y →+ Z which converge at Z, and X and Y contain
assignments to some variable v (in the original program),
then a φ-node must be inserted in Z (in the new
program)

• Options:

• minimal: As few φ-nodes as possible subject to condition

• Briggs-minimal: Do not insert φ-nodes if V is not live
across basic blocks

• pruned: Remove “dead” φ-nodes

Tuesday, January 19, 2010

Minimal placement

• Condition:

• If ∃ CFG nodes X, Y, Z such that there are paths X →+ Z
and Y →+ Z which converge at Z, and X and Y contain
assignments to some variable v (in the original program),
then a φ-node must be inserted in Z (in the new
program)

• Only want to place φ-nodes wherever the placement
condition is true

• Will be at join points, but not all points

• Want to trace paths from definitions and find earliest place
those paths merge.

Tuesday, January 19, 2010

Example

Red nodes represent nodes which
satisfy conditionX = X =

X =

Tuesday, January 19, 2010

Finding minimal placement

• Could trace every path from assignments to find
convergence points

• This is expensive!

• Intuition: what if, for each assignment, we can find the set of
nodes which could result in a convergence of definitions?

• Then only need to place φ-nodes there!

Tuesday, January 19, 2010

Detour: dominance
• Recall some terms from CFG analysis

• A node X dominates a node Y if X appears
on all paths from entry to Y

• X ∈ DOM(Y)

• A node X strictly dominates Y if X DOM Y
and X ≠ Y

• X ∈ DOM!(Y)

• A node X is the immediate dominator of Y if
X is the closest dominator of Y

• X = IDOM(Y)

• Note: X = IDOM(Y) ⇒ ∀ X’ ∈ DOM(Y),

X’ ∈ DOM(X)

A

B

D

E

F

C

Tuesday, January 19, 2010

Dominance trees

• Dominance tree induced by IDOM

• If X = IDOM(Y), X is Y’s parent in
dominance tree

A

B

D

E

F

C

Tuesday, January 19, 2010

Dominance trees

• Dominance tree induced by IDOM

• If X = IDOM(Y), X is Y’s parent in
dominance tree

A

B

D C E

F

Tuesday, January 19, 2010

Dominance frontier

• The dominance frontier of a
node X is the set of nodes
DF(X) such that for all Y ∈
DF(X), X dominates a
predecessor of Y, but does not
strictly dominate Y

• What are the dominance
frontiers for the nodes in this
CFG?

A

B

D

E

F

C

A

B

D C E

F

Tuesday, January 19, 2010

Finding dominance frontiers
• Start by building dominance tree (see algorithm in Cooper et al.), then

run algorithm:

• Intuition:

• v can only be in a DF if it has 2 or more preds

• Predecessors must have v in DF, unless they dominate v (by definition).

• Dominators of predecessors must have v in DF, unless they dominate v

forall v
if (number of predecessors of v ≥ 2) then

forall predecessors p of v
runner = p
while (runner ≠ IDOM(v))

add v to DF(runner)
runner = IDOM(runner)

Tuesday, January 19, 2010

Example

1.

2. X = 7.

3. 4. 8. X = 9. X =

10.5.

6.

Tuesday, January 19, 2010

Iterated dominance frontier

DF+(L) = limit of sequence
DF1 = DF (L)

DFi+1 = DF (L ∪DFi)

DF (L) =
⋃

X∈L
DF (X)

Theorem:
The set of nodes that need φ-nodes for a variable v
is the iterated dominance frontier DF+(L) where L is
the set of nodes with assignments to v

Tuesday, January 19, 2010

Inserting φ-nodes

foreach variable v
HasAlready = { }
EverOnWorklist = { }
Worklist = { }
foreach node X containing assignment to v

EverOnWorklist = EverOnWorklist ∪ {X}
Worklist = Worklist ∪ {X}

while Worklist not empty
remove X from Worklist
foreach Y ∈ DF(X)

if Y ∉ HasAlready
insert φ-node for v at {Y}
HasAlready = HasAlready ∪ {Y}
if Y ∉ EverOnWorklist

Worklist = Worklist ∪ {Y}
EverOnWorklist = EverOnWorklist ∪ {Y}

Tuesday, January 19, 2010

Converting to SSA form

• Two steps to convert a program to SSA form

• φ function placement

• Where do we place the φ functions?

• Variable renaming

• Rename variable definitions and uses to satisfy single-
assignment property

Tuesday, January 19, 2010

Variable renaming

• At this point, φ-nodes are of the form v = φ(v, v)

• Need to rename each variable to satisfy SSA criteria

• High level idea:

• At every φ-node, rename “target” of φ, then replace all
names in the block with new name

• Change names in successor blocks to match new name,
unless successor block has a φ-node

• In which case, generate new name for target, and
continue

Tuesday, January 19, 2010

Algorithms

Procedure GenName(Variable v)
i = Counters[v]++
replace v with vi

Push i onto Stacks[v]

Stacks: an array of stacks, one for each variable
Counters: an array of counters, one for each variable

Procedure Rename(Block X)
if X visited, return
foreach φ-node P in X

GenName(LHS(P))
foreach statement A in X

foreach Variable v ∈ RHS(A)
replace v with vi where i = Top(Stacks[v])

foreach Variable v ∈ LHS(A) GenName(v)
foreach Y ∈ successors(X)

foreach φ-node P in Y
replace operands of P according to vars in X

foreach Y ∈ successors(X) Rename(Y)
foreach φ-node or statement A in X

foreach vi ∈ LHS(A)
Pop(Stacks[v])

Start by calling Rename(Entry)

Tuesday, January 19, 2010

Pruning φ-nodes

• Can eliminate φ-nodes that occur because of variables that
are not live across basic blocks

• These “block local” variables won’t be used later, so do
not need to be merged

• Can eliminate φ-nodes that are dead

• Merged variable isn’t used again

Tuesday, January 19, 2010

Translating out of SSA form
• Cannot just remove φ-nodes and restore variables to

original names

• Can mess up optimizations that assume variables use
separate storage

while (...) do
read v
w = v + w
v = 6
w = v + w

end

while (...) do
w3 = φ(w0, w2)
v3 = φ(v0, v2)
read v1

w1 = v1 + w3

v2 = 6
w2 = v2 + w1

v2 = 6
while (...) do

w3 = φ(w0, w2)
v3 = φ(v0, v2)
read v1

w1 = v1 + w3

w2 = v2 + w1

Tuesday, January 19, 2010

Translating out of SSA form
• Eliminate φ-nodes

• Replace with copies in
predecessor nodes

• But doesn’t this add a lot of
extra copies?

• Solution:

• Graph coloring with copy/
move coalescing!

• Allows most renamed
variables to revert to original
name by coalescing with each
other

• If not legal, graph coloring
will prevent coalescing

if (...)

x_1 = 5 x_2 = 7

x_3 = !(x_1, x_2)

y = x_3

if (...)

x_1 = 5

x_3 = x_1

x_2 = 7

x_3 = x_2

y = x_3

Tuesday, January 19, 2010

Returning to CP

x = ... x = ... x = ... x = ...

... = x ... = x ... = x ... = x

?

x = 2

?

... ...

... ...

y = x

... ...

Use-def chains: 16
In SSA form: place φ node in middle

Tuesday, January 19, 2010

Problems with u/d CP

• What happens if we know
which way a branch will
resolve?

• Do not need to propagate
information from that
branch

• Easy to do with CFGs

• What does this mean when
we’re using u/d chains?

• Can be very hard to tell
which definitions to ignore!

x = 2

?

x = 4 ...

...

y = x

Tuesday, January 19, 2010

x_1 = 2

?

x_2 = 4 ...

x_3 = �

y = x_3

Use/def CP with SSA

• SSA form shortens u/d chains

• Chains terminate at merge
points, rather than crossing
them

• Can simply ignore information
merged from un-taken
branches

• Much easier to account for
irrelevant information

• Complexity: O(EV)

Tuesday, January 19, 2010

