Analysis of
programs with pointers

Wednesday, November 30, 2011

Simple example

X:=5 S1

ptr .= @x S2 >>

*ptr:=9 S3

y =X S4)
program dependences

 What are the dependences in this program?

* Problem: just looking at variable names will not give you the correct
information

— After statement S2, program names “x” and “*ptr” are both expressions
that refer to the same memory location.

— We say that ptr points-to x after statement S2.

* In a C-like language that has pointers, we must know the points-to
relation to be able to determine dependences correctly

Wednesday, November 30, 2011

Program model|

For now, only types are int and int*

No heap

— All pointers point to only to stack variables
* No procedure or function calls
Statements involving pointer variables:
— address: x := &y

— Copy: X:=Yy
— load: X =%y
— store: *x:=y

Arbitrary computations involving ints

Wednesday, November 30, 2011

Points-to relation

* Directed graph:
— nodes are program variables
— edge (a,b): variable a points-to variable b

©
« Can use a special node to represent NULL

* Points-to relation is different at different program
points

Wednesday, November 30, 2011

Points-to graph

« QOut-degree of node may be more than one
— if points-to graph has edges (a,b) and (a,c), it means that
variable a may point to either b or c

— depending on how we got to that point, one or the other
will be true

— path-sensitive analyses: track how you got to a program
point (we will not do this)

if (p) .
then x := &y - -
else x = &z X =&y X =&z

What does x point toN

Wednesday, November 30, 2011

Ordering on points-to relation

» Subset ordering: for a given set of
variables

— Least element is graph with no edges

— G1 <= G2 if G2 has all the edges G1 has and
maybe some more

» Given two points-to relations G1 and G2

— G1 U G2: least graph that contains all the
edges in G1 and in G2

Wednesday, November 30, 2011

Overview

« We will look at three different points-to analyses.

* Flow-sensitive points-to analysis
— Dataflow analysis
— Computes a different points-to relation at each point in program

* Flow-insensitive points-to analysis
— Computes a single points-to graph for entire program
— Andersen’s algorithm
» Natural simplification of flow-sensitive algorithm

— Steensgard’s algorithm

* Nodes in tree are equivalence classes of variables
— if x may point-to either y or z, put y and z in the same equivalence class

» Points-to relation is a tree with edges from children to parents rather
than a general graph

» Less precise than Andersen’s algorithm but faster

Wednesday, November 30, 2011

Flow-sensitive algorithm

ptr

O— —
O, 0
Xy —zw

Steensgard’s algorithm

Wednesday, November 30, 2011

Notation

 Suppose S and S1 are set-valued variables.
« S & S1: strong update

— set assignment

« S U& S1: weak update
— set union: thisis like S € S U S1

Wednesday, November 30, 2011

Flow-sensitive algorithm

Wednesday, November 30, 2011

Dataflow equations

* Forward flow, any path analysis
» Confluence operator: G1 U G2
« Statements

| G | G
X = &y X =%y
| G’ = G with pt'(x) < {y} | G’ = G with pt'(x) < U pt(a)
for all a in pt(y)
| G | G
X =y X =y
| G’ = G with pt'(x) < pt(y) | G’ = G with pt'(a) U< pt(y)

for all a in pt(x)

Wednesday, November 30, 2011

Dataflow equations (contd.)

| G
X =%y

| G’ = G with pt'(x) € U pt(a)
for alta in pt(y)

| G'= G with pt'(a) U< pt(y)
for all a inpt(x)

strong updates weak update (why?)

Wednesday, November 30, 2011

Strong vs. weak updates

« Strong update:

— At assignment statement, you know precisely which variable is
being written to

— Example: x:=....

— You can remove points-to information about x coming into the
statement in the dataflow analysis.

 Weak update:

— You do not know precisely which variable is being updated; only
that it is one among some set of variables.

— Example: *x = ...

— Problem: at analysis time, you may not know which variable x
points to (see slide on control-flow and out-degree of nodes)

— Refinement: if out-degree of x in points-to graph is 1 and x is
known not be nil, we can do a strong update even for *x := ...

Wednesday, November 30, 2011

Structures

« Structure types
— struct cell {int value; struct cell *left, *right;}
— struct cell x,y;

« Use a “field-sensitive” model
— x and y are nodes
— each node has three internal fields labeled value, left,
right
* This representation permits pointers into fields of
structures

— If this is not necessary, we can simply have a node for
each structure and label outgoing edges with field
name

Wednesday, November 30, 2011

int main(void)

{ struct cell {int value; X
struct cell *next; y
}. value || next
struct cell x,y,z,*p; value | next
int sum;
x.value = 5; z
x.next = &y; value || next
y.value = 6;
y.next = &z; P
z.value = 7;
z.next = NULL; X @
= &% value || next y
gum :,O; value || next
while (p = NULL) {
sum = sum’+ (*p).value; v
p=(Cp)next,
} value || next
return sum;
) P

Example

Wednesday, November 30, 2011

Flow-insensitive algorithms

Wednesday, November 30, 2011

Flow-insensitive analysis

* Flow-sensitive analysis computes a different graph at
each program point.

« This can be quite expensive.

* One alternative: flow-insensitive analysis

— Intuition:compute a points-to relation which is the least upper
bound of all the points-to relations computed by the flow-
sensitive analysis

« Approach:

— Ignore control-flow

— Consider all assignment statements together
» replace strong updates in dataflow equations with weak updates

— Compute a single points-to relation that holds regardless of the
order in which assignment statements are actually executed

Wednesday, November 30, 2011

Andersen's algorithm

weak updates only

o Statements

| G
X 1= &y
| G = G with pt(x) U< {y} | G = G with pt(x) U< pt(a)
for all a in pt(y)
| G | G
X =y *X 1= y
| G = G with pt(x) U< pt(y) | G = G with pt(a) U< pt(y)

for all a in pt(x)

Wednesday, November 30, 2011

Example

int main(void)
{ struct cell {int value;
struct cell *next;

% C
struct cell x,y,z,*p; x.next = &y; \
int sum;
ynext=8&z
x.value = 5; I
x.next = &y; znext=NULL; | — G
y.value = 6; N
y.next = &z; p = &X;
z.value = 7;
z.next = NULL; p = (*p).next;
p = &X;
sum = 0; _ . . .
while (p != NULL) { Assignments for flow-insensitive analysis
sum = sum + (*p).value;
p = (*p).next;
}
return sum;
}

Wednesday, November 30, 2011

Solution to

flow-insensitive equations

value

next

next

Qo

- Compare with points-to graphs for flow-sensitive solution
- Why does p point-to NULL in this graph?

Wednesday, November 30, 2011

Andersen’s algorithm
formulated using set constraints

o Statements

pt:var® 2%

X =&y X =%y
y € pt(x) Va€ pi(y).pt(x) 2 pi(a)
X =Yy X =y

pt(x) 2 pt(y) Va€ pt(x).pt(a) 2 pt(y)

Wednesday, November 30, 2011

Steensgard’s algorithm

* Flow-insensitive

« Computes a points-to graph in which there is no
fan-out

— In points-to graph produced by Andersen’s algorithm,
if X points-to y and z, y and z are collapsed into an
equivalence class

— Less accurate than Andersen’s but faster

* We can exploit this to design an O(N*CL(N))

algorithm, where N is the number of statements In
the program.

Wednesday, November 30, 2011

Steensgard’s algorithm
using set constraints

o Statements

pt:var® 2"

No fan-out Vx.Vy,z€& pt(x).pt(y) = pt(z)

X =&y X =%y
yE pt(x) Va€ pt(y).pt(x) = pt(a)

X =Yy X =y
pt(x) = pt(y) Va€ pt(x).pt(a) = pt(y)

Wednesday, November 30, 2011

Trick for one-pass processing

« Consider the following equations

pt(x) = pt(y) dummy € pt(x)
z € pt(x) pt(x) = pt(y)
z€ pt(x)

* When first equation on left is processed, x and y are not pointing to
anything.

* Once second equation is processed, we need to go back and
reprocess first equation.

» Trick to avoid doing this: when processing first equation, if x and y
are not pointing to anything, create a dummy node and make x and
y point to that

— this is like solving the system on the right
» |tis easy to show that this avoids the need for revisiting equations.

Wednesday, November 30, 2011

Algorithm

* Can be implemented in single pass through
program

 Algorithm uses union-find to maintain
equivalence classes (sets) of nodes

* Points-to relation is implemented as a pointer
from a variable to a representative of a set

» Basic operations for union find:

— rep(v): find the node that is the representative of the
setthat visin

— union(v1,v2): create a set containing elements in sets
contamlng v1 and v2, and return representative of that
set

Wednesday, November 30, 2011

Auxiliary methods

class var { rec _union(var vl, var v2) {
//instance variables

points to: var; pl = pt(rep(vl));
— . p2 = pt(rep(v2));
name: Strlng; tl = union(rep(vl), rep(v2));
if (pl == p2)
//constructor; also return;
creates singleton set in else if (pl != null && p2 != null)
union-find data structure t2 = rec_union(pl, p2);

else if (pl != null) t2 = pl;
else if (p2 != null) t2 = p2;
else t2 = null;

var(string);

//class method; also
creates singleton set in
union-find data structure

tl.set pt(t2);
make-dummy-var () :var;

return tl;

//instance methods
get pt(): var;
set pt(var);//updates rep

pt(var v) {
//v does not have to be representative
t = rep(v);
return t.get pt();

Wednesday, November 30, 2011

Algorithm

Initialization: make each program variable into an object of type var
and enter object into union-find data structure

for each statement S in the program do
Sis x = &y: {if (pt(x) == null)
x.set-pt(rep(y));
else rec-union(pt(x),y);
}
S is x :=y: {if (pt(x) == null and pt(y) == null)
x.set-pt(var.make-dummy-var());
y.set-pt(rec-union(pt(x),pt(y)));
Y
S is x := *y:{if (pt(y) == null)
y.set-pt(var.make-dummy-var());
var a := pt(y);
if(pt(a) == null)
a.set-pt(var.make-dummy-var());
x.set-pt(rec-union(pt(x),pt(a)));
Y
S is *x := y:{if (pt(x) == null)
x.set-pt(var.make-dummy-var());
var a := pt(x);
if(pt(a) == null)
a.set-pt(var.make-dummy-var());
y.set-pt(rec-union(pt(y),pt(a)));
Y

Wednesday, November 30, 2011

Inter-procedural analysis

 \What do we do if there are function calls?

X1l = &a X2 = &a
yl = &b y2 = &b
swap(xl, yl) swap(x2, y2)

swap (pl, p2) {

tl = *pl;
t2 = *p2;
*Pl = t2;
*p2 = tl;

Wednesday, November 30, 2011

Two approaches

« Context-sensitive approach:

— treat each function call separately just like real
program execution would

— problem: what do we do for recursive functions?
* need to approximate
« Context-insensitive approach:

— merge information from all call sites of a particular
function

— in effect, inter-procedural analysis problem is reduced
to intra-procedural analysis problem

 Context-sensitive approach is obviously more
accurate but also more expensive to compute

Wednesday, November 30, 2011

Context-insensitive approach

X1l = &a X2 = &a
yl = &b y2 = &b
swap(xl, yl) swap(x2, y2)

N T~ —

swap (pl, p2) {

tl = *pl;
t2 = *p2;
*pl = t2;
*p2 = tl;

VY

Wednesday, November 30, 2011

Context-sensitive approach

x1l = &a X2 = &a
yl = &b y2 = &b
swap(xl, yl) swap(xz{\iil//’_\\
[;j(pl, p2) { swap (pl, p2) {
tl = *pl; tl = *pl;
t2 = *p2; €2 = *p2;
*pl = t2; *pl = t2;
*p2 = tl; *p2 = tl;

Wednesday, November 30, 2011

Context-insensitive/Flow-insensitive
Analysis

 For now, assume we do not have function
parameters

— this means we know all the call sites for a given
function
« Set up equations for binding of actual and formal
parameters at each call site for that function

— use same variables for formal parameters for all call
sites

* |ntuition: each invocation provides a new set of
constraints to formal parameters

Wednesday, November 30, 2011

Swap example

xl = &a X2 = &a
| yl = &b y2 = &b
pl = x1 pl = x2
Pz =yl P2 = y2
tl = *pl;
t2 = *p2;
*pl = t2;
*p2 = tl;

Wednesday, November 30, 2011

Heap allocation

« Simplest solution:

— use one node in points-to graph to represent all heap
cells

* More elaborate solution:

— use a different node for each malloc site in the
program
 Even more elaborate solution: shape analysis
— goal: summarize potentially infinite data structures

— but keep around enough information so we can
disambiguate pointers from stack into the heap, if
possible

Wednesday, November 30, 2011

Summary

Less precise More precise
Equality-based Subset-based
Flow-insensitive Flow-sensitive
Context-insensitive Context-sensitive

No consensus about which technique to use
Experience: if you are context-insensitive, you might as well be flow-insensitive

Wednesday, November 30, 2011

History of points-to analysis

Figure | A Dol Tlistory of Paenter Analysis (K] — b on scalabilidy and poscinon

| || Equality based Subact hased | Flow . aensithve |
o Anderse 1
, 8 LM B KLOO
TE[o wan
:): g ¢ I‘).?f':' ! || K10 o Falindods ot ol |7
j g Srat paper on poontes analysas L BU KLOC N L
== Hui A Tacdivu |11 g ';n"m"'],r
® Steenaganse 01 * > '“_”“N u) k- "
1996 14 MO 2001 1 MLOC
Arst nealable poincer anslyxs o Bomdl ot ul 2
208500 kLo
lust Wwouw 20
¥ o Lardi and Ryder |19
28 10 1 KLOC
?z Whaloy a
S El o ranndrich e) p8) ' ,.,,:3:" &.‘B“L.Ll‘_“g‘(! * Wiken and Lam 7]

Mo MK

clening boazed BDDe

190 KIhaone

o Whaley and Tiinard |4
1 =0 KL

from Ryder and Rayside

Wednesday, November 30, 2011

