Analysis of programs with pointers
What are the dependences in this program?

Problem: just looking at variable names will not give you the correct information

– After statement S2, program names “x” and “*ptr” are both expressions that refer to the same memory location.
– We say that ptr points-to x after statement S2.

In a C-like language that has pointers, we must know the points-to relation to be able to determine dependences correctly.
Program model

• For now, only types are int and int*
• No heap
 – All pointers point to only to stack variables
• No procedure or function calls
• Statements involving pointer variables:
 – address: \(x := &y \)
 – copy: \(x := y \)
 – load: \(x := *y \)
 – store: \(*x := y \)
• Arbitrary computations involving ints
Points-to relation

• **Directed graph:**
 – nodes are program variables
 – edge (a,b): variable a points-to variable b

\[
\begin{array}{c}
\text{x} \\
\text{ptr} \\
\text{y}
\end{array}
\]

• Can use a special node to represent NULL
• Points-to relation is different at different program points
Points-to graph

• Out-degree of node may be more than one
 – if points-to graph has edges \((a,b)\) and \((a,c)\), it means that variable \(a\) may point to either \(b\) or \(c\)
 – depending on how we got to that point, one or the other will be true
 – path-sensitive analyses: track how you got to a program point (we will not do this)

```c
if (p)
    then x := &y
else x := &z
.....
```

What does \(x\) point to here?
Ordering on points-to relation

• Subset ordering: for a given set of variables
 – Least element is graph with no edges
 – $G_1 \leq G_2$ if G_2 has all the edges G_1 has and maybe some more

• Given two points-to relations G_1 and G_2
 – $G_1 \cup G_2$: least graph that contains all the edges in G_1 and in G_2
Overview

• We will look at three different points-to analyses.
• Flow-sensitive points-to analysis
 – Dataflow analysis
 – Computes a different points-to relation at each point in program
• Flow-insensitive points-to analysis
 – Computes a single points-to graph for entire program
 – Andersen’s algorithm
 • Natural simplification of flow-sensitive algorithm
 – Steensgard’s algorithm
 • Nodes in tree are equivalence classes of variables
 – if x may point-to either y or z, put y and z in the same equivalence class
 • Points-to relation is a tree with edges from children to parents rather than a general graph
 • Less precise than Andersen’s algorithm but faster
Example

Flow-sensitive algorithm

Andersen’s algorithm

Steensgaard’s algorithm

Wednesday, November 30, 2011
Notation

• Suppose S and S1 are set-valued variables.
• $S \leftarrow S1$: strong update
 – set assignment
• $S U \leftarrow S1$: weak update
 – set union: this is like $S \leftarrow S U S1$
Flow-sensitive algorithm
Dataflow equations

- Forward flow, any path analysis
- Confluence operator: $G_1 \cup G_2$
- Statements

\[
\begin{align*}
\text{G} & \quad x := \& y \\
G' &= G \text{ with } pt'(x) \leftarrow \{y\}
\end{align*}
\]

\[
\begin{align*}
\text{G} & \quad x := y \\
G' &= G \text{ with } pt'(x) \leftarrow \text{pt}(y)
\end{align*}
\]

\[
\begin{align*}
\text{G} & \quad x := *y \\
G' &= G \text{ with } pt'(x) \leftarrow \cup pt(a) \text{ for all } a \in \text{pt}(y)
\end{align*}
\]

\[
\begin{align*}
\text{G} & \quad *x := y \\
G' &= G \text{ with } pt'(a) \leftarrow \text{pt}(y) \text{ for all } a \in \text{pt}(x)
\end{align*}
\]
Dataflow equations (contd.)

- **Strong updates**
 - $x := &y$
 - $G' = G$ with $pt'(x) \leftarrow \{y\}$
 - $x := y$
 - $G' = G$ with $pt'(x) \leftarrow pt(y)$

- **Weak update (why?)**
 - $x := *y$
 - $G' = G$ with $pt'(x) \leftarrow U pt(a)$ for all a in $pt(y)$
 - ${}^*x := y$
 - $G' = G$ with $pt'(a) U \leftarrow pt(y)$ for all a in $pt(x)$
Strong vs. weak updates

• **Strong update:**
 – At assignment statement, you know precisely which variable is being written to
 – Example: \(x := \ldots \)
 – You can remove points-to information about \(x \) coming into the statement in the dataflow analysis.

• **Weak update:**
 – You do not know precisely which variable is being updated; only that it is one among some set of variables.
 – Example: \(\ast x := \ldots \)
 – Problem: at analysis time, you may not know which variable \(x \) points to (see slide on control-flow and out-degree of nodes)
 – Refinement: if out-degree of \(x \) in points-to graph is 1 and \(x \) is known not be nil, we can do a strong update even for \(\ast x := \ldots \)
Structures

• **Structure types**
 – `struct cell {int value; struct cell *left, *right;}`
 – `struct cell x,y;`
• **Use a “field-sensitive” model**
 – `x` and `y` are nodes
 – each node has three internal fields labeled value, left, right
• **This representation permits pointers into fields of structures**
 – If this is not necessary, we can simply have a node for each structure and label outgoing edges with field name
int main(void)
{
 struct cell {
 int value;
 struct cell *next;
 };
 struct cell x, y, z, *p;
 int sum;

 x.value = 5;
 x.next = &y;
 y.value = 6;
 y.next = &z;
 z.value = 7;
 z.next = NULL;

 p = &x;
 sum = 0;
 while (p != NULL) {
 sum = sum + (*p).value;
 p = (*p).next;
 }
 return sum;
}
Flow-insensitive algorithms
Flow-insensitive analysis

• Flow-sensitive analysis computes a different graph at each program point.
• This can be quite expensive.
• One alternative: flow-insensitive analysis
 – Intuition: compute a points-to relation which is the least upper bound of all the points-to relations computed by the flow-sensitive analysis
• Approach:
 – Ignore control-flow
 – Consider all assignment statements together
 • replace strong updates in dataflow equations with weak updates
 – Compute a single points-to relation that holds regardless of the order in which assignment statements are actually executed
Andersen’s algorithm

• Statements

- $x := &y$
 - $G = G$ with $\text{pt}(x) \leftarrow \{y\}$

- $x := y$
 - $G = G$ with $\text{pt}(x) \leftarrow \text{pt}(y)$

- $x := *y$
 - $G = G$ with $\text{pt}(x) \leftarrow \text{pt}(a)$
 - for all a in $\text{pt}(y)$

- $*x := y$
 - $G = G$ with $\text{pt}(a) \leftarrow \text{pt}(y)$
 - for all a in $\text{pt}(x)$

weak updates only

Wednesday, November 30, 2011
int main(void)
 {
 struct cell
 {
 int value;
 struct cell *next;

 }

 struct cell x,y,z,*p;
 int sum;

 x.value = 5;
 x.next = &y;
 y.value = 6;
 y.next = &z;
 z.value = 7;
 z.next = NULL;

 p = &x;
 sum = 0;
 while (p != NULL) {
 sum = sum + (*p).value;
 p = (*p).next;
 }
 return sum;
 }
Solution to flow-insensitive equations

- Compare with points-to graphs for flow-sensitive solution
- Why does p point-to NULL in this graph?
Andersen’s algorithm formulated using set constraints

- **Statements**

\[pt : \text{var} \otimes 2^{\text{var}} \]

\[
\begin{align*}
x := & y & x := *y \\
y \in pt(x) & \forall a \in pt(y). pt(x) \supseteq pt(a) \\
x := y & *x := y \\
pt(x) \supseteq pt(y) & \forall a \in pt(x). pt(a) \supseteq pt(y)
\end{align*}
\]
Steensgård’s algorithm

- Flow-insensitive
- Computes a points-to graph in which there is no fan-out
 - In points-to graph produced by Andersen’s algorithm, if x points-to y and z, y and z are collapsed into an equivalence class
 - Less accurate than Andersen’s but faster
- We can exploit this to design an $O(N^{\alpha(N)})$ algorithm, where N is the number of statements in the program.
Steensgard’s algorithm using set constraints

• Statements

\[pt : \text{var} \oplus 2^{\text{var}} \]

No fan-out \[\forall x. \forall y, z \in pt(x). pt(y) = pt(z) \]

\[
\begin{align*}
\text{x := &y} & \quad \text{x := *y} \\
& \quad \forall a \in pt(y). pt(x) = pt(a) \\
& \quad \forall a \in pt(x). pt(a) = pt(y)
\end{align*}
\]
Trick for one-pass processing

- Consider the following equations:

\[pt(x) = pt(y) \]
\[z \in pt(x) \]

- When first equation on left is processed, x and y are not pointing to anything.

- Once second equation is processed, we need to go back and reprocess first equation.

- Trick to avoid doing this: when processing first equation, if x and y are not pointing to anything, create a dummy node and make x and y point to that.
 - this is like solving the system on the right

- It is easy to show that this avoids the need for revisiting equations.
Algorithm

- Can be implemented in single pass through program
- Algorithm uses union-find to maintain equivalence classes (sets) of nodes
- Points-to relation is implemented as a pointer from a variable to a representative of a set
- Basic operations for union find:
 - rep(v): find the node that is the representative of the set that v is in
 - union(v1,v2): create a set containing elements in sets containing v1 and v2, and return representative of that set
Auxiliary methods

class var {
 //instance variables
 points_to: var;
 name: string;

 //constructor; also creates singleton set in union-find data structure
 var(string);
 //class method; also creates singleton set in union-find data structure
 make-dummy-var():var;

 //instance methods
 get_pt(): var;
 set_pt(var);//updates rep
}

rec_union(var v1, var v2) {
 p1 = pt(rep(v1));
 p2 = pt(rep(v2));
 t1 = union(rep(v1), rep(v2));
 if (p1 == p2)
 return;
 else if (p1 != null && p2 != null)
 t2 = rec_union(p1, p2);
 else if (p1 != null) t2 = p1;
 else if (p2 != null) t2 = p2;
 else t2 = null;

 t1.set_pt(t2);
 return t1;
}

pt(var v) {
 //v does not have to be representative
 t = rep(v);
 return t.get_pt();
}
Algorithm

Initialization: make each program variable into an object of type var and enter object into union-find data structure

for each statement S in the program do
 S is x := &y: \{if (pt(x) == null)
 x.set-pt(rep(y));
 else rec-union(pt(x),y);
\}
 S is x := y: \{if (pt(x) == null and pt(y) == null)
 x.set-pt(var.make-dummy-var());
 y.set-pt(rec-union(pt(x),pt(y)));
\}
 S is x := *y:{if (pt(y) == null)
 y.set-pt(var.make-dummy-var());
 var a := pt(y);
 if(pt(a) == null)
 a.set-pt(var.make-dummy-var());
 x.set-pt(rec-union(pt(x),pt(a)));
\}
 S is *x := y:{if (pt(x) == null)
 x.set-pt(var.make-dummy-var());
 var a := pt(x);
 if(pt(a) == null)
 a.set-pt(var.make-dummy-var());
 y.set-pt(rec-union(pt(y),pt(a)));
\}
Inter-procedural analysis

• What do we do if there are function calls?

\[
x_1 = \&a \\
y_1 = \&b \\
\text{swap}(x_1, y_1)
\]

\[
x_2 = \&a \\
y_2 = \&b \\
\text{swap}(x_2, y_2)
\]

\[
\text{swap}(p_1, p_2) \{
 t_1 = *p_1;
 t_2 = *p_2;
 *p_1 = t_2;
 *p_2 = t_1;
\}
\]
Two approaches

• Context-sensitive approach:
 – treat each function call separately just like real program execution would
 – problem: what do we do for recursive functions?
 • need to approximate

• Context-insensitive approach:
 – merge information from all call sites of a particular function
 – in effect, inter-procedural analysis problem is reduced to intra-procedural analysis problem

• Context-sensitive approach is obviously more accurate but also more expensive to compute
Context-insensitive approach

\[
\begin{align*}
\text{x1} &= \&a \\
\text{y1} &= \&b \\
\text{swap(x1, y1)}
\end{align*}
\]

\[
\begin{align*}
\text{x2} &= \&a \\
\text{y2} &= \&b \\
\text{swap(x2, y2)}
\end{align*}
\]

\[
\begin{align*}
\text{swap (p1, p2) \{} \\
\text{t1} &= *\text{p1}; \\
\text{t2} &= *\text{p2}; \\
*\text{p1} &= \text{t2}; \\
*\text{p2} &= \text{t1}; \\
\text{\}}
\end{align*}
\]
Context-sensitive approach

\begin{verbatim}
x1 = &a
y1 = &b
swap(x1, y1)
\end{verbatim}

\begin{verbatim}
x2 = &a
y2 = &b
swap(x2, y2)
\end{verbatim}

\begin{verbatim}
swap (p1, p2) {
 t1 = *p1;
 t2 = *p2;
 *p1 = t2;
 *p2 = t1;
}
\end{verbatim}

\begin{verbatim}
swap (p1, p2) {
 t1 = *p1;
 t2 = *p2;
 *p1 = t2;
 *p2 = t1;
}
\end{verbatim}
Context-insensitive/Flow-insensitive Analysis

• For now, assume we do not have function parameters
 – this means we know all the call sites for a given function

• Set up equations for binding of actual and formal parameters at each call site for that function
 – use same variables for formal parameters for all call sites

• Intuition: each invocation provides a new set of constraints to formal parameters
Swap example

\[
x_1 = &a \\
y_1 = &b \\
p_1 = x_1 \\
p_2 = y_1
\]

\[
x_2 = &a \\
y_2 = &b \\
p_1 = x_2 \\
p_2 = y_2
\]

\[
t_1 = *p_1; \\
t_2 = *p_2; \\
*p_1 = t_2; \\
*p_2 = t_1;
\]
Heap allocation

- Simplest solution:
 - use one node in points-to graph to represent all heap cells

- More elaborate solution:
 - use a different node for each malloc site in the program

- Even more elaborate solution: shape analysis
 - goal: summarize potentially infinite data structures
 - but keep around enough information so we can disambiguate pointers from stack into the heap, if possible
<table>
<thead>
<tr>
<th>Less precise</th>
<th>More precise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equality-based</td>
<td>Subset-based</td>
</tr>
<tr>
<td>Flow-insensitive</td>
<td>Flow-sensitive</td>
</tr>
<tr>
<td>Context-insensitive</td>
<td>Context-sensitive</td>
</tr>
</tbody>
</table>

No consensus about which technique to use
Experience: if you are context-insensitive, you might as well be flow-insensitive
History of points-to analysis

Figure 1: A Brief History of Pointer Analysis [33] — focus on scalability and precision

<table>
<thead>
<tr>
<th></th>
<th>Equality-based</th>
<th>Subset-based</th>
<th>Flow-sensitive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Context-insensitive</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Wexler [32] | | | • Choi et al. [5]
| 1980: < 1 KLOC | | | 1993: 30 KLOC |
| First paper on pointer analysis | | | |
| Steensgaard [31] | | • Andersen [1] | |
| 1996: 1+ MLOC | | 1994: 5 KLOC | |
| First scalable pointer analysis | | • Fähndrich et al. [7] | |
| | | 1998: 60 KLOC | |
| | | • Heintze and Tardieu [11] | |
| | | 2001: 1 MLOC | |
| | | • Berndt et al. [2] | |
| | | 2003: 500 KLOC | |
| | | First to use BDDs | |
| **Context-sensitive** | | • Whaley and Lam [35] | |
| Fähndrich et al. [8] | | 2004: 600 KLOC | |
| 2000: 200K | | Eliding-based BDDs | |
| | • Landi and Ryder [19] | |
| | 1992: 3 KLOC | | |
| | • Wilson and Lam [37] | |
| | 1998: 30 KLOC | | |
| | • Whaley and Rinard [36] | |
| | 1999: 50 KLOC | | |

from Ryder and Rayside