
Analysis of
programs with pointers

Wednesday, November 30, 2011

Simple example

• What are the dependences in this program?

• Problem: just looking at variable names will not give you the correct
information

– After statement S2, program names “x” and “*ptr” are both expressions
that refer to the same memory location.

– We say that ptr points-to x after statement S2.

• In a C-like language that has pointers, we must know the points-to
relation to be able to determine dependences correctly

x := 5
ptr := @x
*ptr := 9
y := x

S1

S2

S3

S4

dependencesprogram

Wednesday, November 30, 2011

Program model

• For now, only types are int and int*

• No heap

– All pointers point to only to stack variables

• No procedure or function calls

• Statements involving pointer variables:
– address: x := &y

– copy: x := y

– load: x := *y

– store: *x := y

• Arbitrary computations involving ints

Wednesday, November 30, 2011

Points-to relation

• Directed graph:
– nodes are program variables

– edge (a,b): variable a points-to variable b

• Can use a special node to represent NULL

• Points-to relation is different at different program
points

x

ptr

y

Wednesday, November 30, 2011

• Out-degree of node may be more than one
– if points-to graph has edges (a,b) and (a,c), it means that

variable a may point to either b or c

– depending on how we got to that point, one or the other
will be true

– path-sensitive analyses: track how you got to a program
point (we will not do this)

Points-to graph

if (p)
 then x := &y
 else x := &z
…..

p

x := &y x := &z

What does x point to here?

Wednesday, November 30, 2011

Ordering on points-to relation

• Subset ordering: for a given set of
variables

– Least element is graph with no edges

– G1 <= G2 if G2 has all the edges G1 has and
maybe some more

• Given two points-to relations G1 and G2

– G1 U G2: least graph that contains all the
edges in G1 and in G2

Wednesday, November 30, 2011

Overview

• We will look at three different points-to analyses.

• Flow-sensitive points-to analysis
– Dataflow analysis

– Computes a different points-to relation at each point in program

• Flow-insensitive points-to analysis
– Computes a single points-to graph for entire program

– Andersen’s algorithm

• Natural simplification of flow-sensitive algorithm

– Steensgard’s algorithm

• Nodes in tree are equivalence classes of variables
– if x may point-to either y or z, put y and z in the same equivalence class

• Points-to relation is a tree with edges from children to parents rather
than a general graph

• Less precise than Andersen’s algorithm but faster

Wednesday, November 30, 2011

Example

x := &z

ptr := @x

y := @w

ptr := @y

ptr x z y w ptr x z y w

ptr

x,y z,w
Flow-sensitive algorithm

Andersen’s algorithm

Steensgard’s algorithm

Wednesday, November 30, 2011

Notation

• Suppose S and S1 are set-valued variables.

• S ! S1: strong update

– set assignment

• S U! S1: weak update

– set union: this is like S ! S U S1

Wednesday, November 30, 2011

Flow-sensitive algorithm

Wednesday, November 30, 2011

Dataflow equations

• Forward flow, any path analysis

• Confluence operator: G1 U G2

• Statements

x := &y

G

G’ = G with pt’(x) ! {y}

x := y

G

G’ = G with pt’(x) ! pt(y)

x := *y

G

G’ = G with pt’(x) ! U pt(a)
 for all a in pt(y)

*x := y

G

G’ = G with pt’(a) U! pt(y)
 for all a in pt(x)

Wednesday, November 30, 2011

Dataflow equations (contd.)

x := &y

G

G’ = G with pt’(x) ! {y}

x := y

G

G’ = G with pt’(x) ! pt(y)

x := *y

G

G’ = G with pt’(x) ! U pt(a)
 for all a in pt(y)

*x := y

G

G’ = G with pt’(a) U! pt(y)
 for all a in pt(x)

strong updates weak update (why?)

Wednesday, November 30, 2011

Strong vs. weak updates

• Strong update:
– At assignment statement, you know precisely which variable is

being written to

– Example: x := ….

– You can remove points-to information about x coming into the
statement in the dataflow analysis.

• Weak update:
– You do not know precisely which variable is being updated; only

that it is one among some set of variables.

– Example: *x := …

– Problem: at analysis time, you may not know which variable x
points to (see slide on control-flow and out-degree of nodes)

– Refinement: if out-degree of x in points-to graph is 1 and x is
known not be nil, we can do a strong update even for *x := …

Wednesday, November 30, 2011

Structures

• Structure types
– struct cell {int value; struct cell *left, *right;}

– struct cell x,y;

• Use a “field-sensitive” model
– x and y are nodes

– each node has three internal fields labeled value, left,
right

• This representation permits pointers into fields of
structures
– If this is not necessary, we can simply have a node for

each structure and label outgoing edges with field
name

Wednesday, November 30, 2011

Example
int main(void)
 { struct cell {int value;
 struct cell *next;
 };
 struct cell x,y,z,*p;
 int sum;

 x.value = 5;
 x.next = &y;
 y.value = 6;
 y.next = &z;
 z.value = 7;
 z.next = NULL;

 p = &x;
 sum = 0;
 while (p != NULL) {
 sum = sum + (*p).value;
 p = (*p).next;
 }
 return sum;
 }

x
y

z

p

nextvalue

nextvalue

nextvalue

x
y

z

p

nextvalue

nextvalue

nextvalue

NULL

NULL

Wednesday, November 30, 2011

Flow-insensitive algorithms

Wednesday, November 30, 2011

Flow-insensitive analysis

• Flow-sensitive analysis computes a different graph at
each program point.

• This can be quite expensive.

• One alternative: flow-insensitive analysis
– Intuition:compute a points-to relation which is the least upper

bound of all the points-to relations computed by the flow-
sensitive analysis

• Approach:
– Ignore control-flow

– Consider all assignment statements together

• replace strong updates in dataflow equations with weak updates

– Compute a single points-to relation that holds regardless of the
order in which assignment statements are actually executed

Wednesday, November 30, 2011

Andersen’s algorithm

• Statements

x := &y

G

G = G with pt(x) U! {y}

x := y

G

G = G with pt(x) U! pt(y)

x := *y

G

G = G with pt(x) U! pt(a)
 for all a in pt(y)

*x := y

G

G = G with pt(a) U! pt(y)
 for all a in pt(x)

weak updates only

Wednesday, November 30, 2011

Example
int main(void)
 { struct cell {int value;
 struct cell *next;
 };
 struct cell x,y,z,*p;
 int sum;

 x.value = 5;
 x.next = &y;
 y.value = 6;
 y.next = &z;
 z.value = 7;
 z.next = NULL;

 p = &x;
 sum = 0;
 while (p != NULL) {
 sum = sum + (*p).value;
 p = (*p).next;
 }
 return sum;
 }

 x.next = &y;

 y.next = &z;

 z.next = NULL;

 p = &x;

 p = (*p).next;

Assignments for flow-insensitive analysis

G

.

.

.

Wednesday, November 30, 2011

Solution to
flow-insensitive equations

x
y

z

p

nextvalue

nextvalue

nextvalue

NULL

- Compare with points-to graphs for flow-sensitive solution
- Why does p point-to NULL in this graph?

Wednesday, November 30, 2011

Andersen’s algorithm
formulated using set constraints

• Statements

x := &y

x := y

x := *y

*x := y

Wednesday, November 30, 2011

Steensgard’s algorithm

• Flow-insensitive

• Computes a points-to graph in which there is no
fan-out
– In points-to graph produced by Andersen’s algorithm,

if x points-to y and z, y and z are collapsed into an
equivalence class

– Less accurate than Andersen’s but faster

• We can exploit this to design an O(N*!(N))

algorithm, where N is the number of statements in
the program.

Wednesday, November 30, 2011

Steensgard’s algorithm
using set constraints

• Statements

x := &y

x := y

x := *y

*x := y

No fan-out

Wednesday, November 30, 2011

Trick for one-pass processing

• Consider the following equations

• When first equation on left is processed, x and y are not pointing to
anything.

• Once second equation is processed, we need to go back and
reprocess first equation.

• Trick to avoid doing this: when processing first equation, if x and y
are not pointing to anything, create a dummy node and make x and
y point to that

– this is like solving the system on the right

• It is easy to show that this avoids the need for revisiting equations.

Wednesday, November 30, 2011

Algorithm

• Can be implemented in single pass through
program

• Algorithm uses union-find to maintain
equivalence classes (sets) of nodes

• Points-to relation is implemented as a pointer
from a variable to a representative of a set

• Basic operations for union find:
– rep(v): find the node that is the representative of the

set that v is in

– union(v1,v2): create a set containing elements in sets
containing v1 and v2, and return representative of that
set

Wednesday, November 30, 2011

Auxiliary methods

rec_union(var v1, var v2) {

! p1 = pt(rep(v1));

! p2 = pt(rep(v2));

! t1 = union(rep(v1), rep(v2));

! if (p1 == p2)

! ! return;

! else if (p1 != null && p2 != null)

! ! t2 = rec_union(p1, p2);

! else if (p1 != null) t2 = p1;

! else if (p2 != null) t2 = p2;

! else t2 = null;

! t1.set_pt(t2);

! return t1;

}

pt(var v) {

! //v does not have to be representative

! t = rep(v);

! return t.get_pt();

class var {

 //instance variables

! points_to: var;

! name: string;

 //constructor; also
creates singleton set in
union-find data structure

 var(string);

 //class method; also
creates singleton set in
union-find data structure

 make-dummy-var():var;

 //instance methods

! get_pt(): var;

! set_pt(var);//updates rep

}

Wednesday, November 30, 2011

Algorithm
Initialization: make each program variable into an object of type var

and enter object into union-find data structure

for each statement S in the program do
 S is x := &y: {if (pt(x) == null)
 x.set-pt(rep(y));
 else rec-union(pt(x),y);
 }
 S is x := y: {if (pt(x) == null and pt(y) == null)
 x.set-pt(var.make-dummy-var());
 y.set-pt(rec-union(pt(x),pt(y)));
 }
 S is x := *y:{if (pt(y) == null)
 y.set-pt(var.make-dummy-var());
 var a := pt(y);
 if(pt(a) == null)
 a.set-pt(var.make-dummy-var());
 x.set-pt(rec-union(pt(x),pt(a)));
 }
 S is *x := y:{if (pt(x) == null)
 x.set-pt(var.make-dummy-var());
 var a := pt(x);
 if(pt(a) == null)
 a.set-pt(var.make-dummy-var());
 y.set-pt(rec-union(pt(y),pt(a)));
 }

Wednesday, November 30, 2011

Inter-procedural analysis

• What do we do if there are function calls?

x1 = &a

y1 = &b

swap(x1, y1)

x2 = &a

y2 = &b

swap(x2, y2)

swap (p1, p2) {

! t1 = *p1;

! t2 = *p2;

! *p1 = t2;

! *p2 = t1;

}

Wednesday, November 30, 2011

Two approaches

• Context-sensitive approach:
– treat each function call separately just like real

program execution would

– problem: what do we do for recursive functions?
• need to approximate

• Context-insensitive approach:
– merge information from all call sites of a particular

function

– in effect, inter-procedural analysis problem is reduced
to intra-procedural analysis problem

• Context-sensitive approach is obviously more
accurate but also more expensive to compute

Wednesday, November 30, 2011

Context-insensitive approach

x1 = &a

y1 = &b

swap(x1, y1)

x2 = &a

y2 = &b

swap(x2, y2)

swap (p1, p2) {

! t1 = *p1;

! t2 = *p2;

! *p1 = t2;

! *p2 = t1;

}

Wednesday, November 30, 2011

Context-sensitive approach

x1 = &a

y1 = &b

swap(x1, y1)

x2 = &a

y2 = &b

swap(x2, y2)

swap (p1, p2) {

! t1 = *p1;

! t2 = *p2;

! *p1 = t2;

! *p2 = t1;

}

swap (p1, p2) {

! t1 = *p1;

! t2 = *p2;

! *p1 = t2;

! *p2 = t1;

}

Wednesday, November 30, 2011

Context-insensitive/Flow-insensitive
Analysis

• For now, assume we do not have function
parameters

– this means we know all the call sites for a given
function

• Set up equations for binding of actual and formal
parameters at each call site for that function

– use same variables for formal parameters for all call
sites

• Intuition: each invocation provides a new set of
constraints to formal parameters

Wednesday, November 30, 2011

Swap example

x1 = &a

y1 = &b

p1 = x1

p2 = y1

x2 = &a

y2 = &b

p1 = x2

p2 = y2

! t1 = *p1;

! t2 = *p2;

! *p1 = t2;

! *p2 = t1;

Wednesday, November 30, 2011

Heap allocation

• Simplest solution:
– use one node in points-to graph to represent all heap

cells

• More elaborate solution:

– use a different node for each malloc site in the
program

• Even more elaborate solution: shape analysis
– goal: summarize potentially infinite data structures

– but keep around enough information so we can
disambiguate pointers from stack into the heap, if
possible

Wednesday, November 30, 2011

Summary

Less precise More precise

Equality-based Subset-based

Flow-insensitive Flow-sensitive

Context-insensitive Context-sensitive

No consensus about which technique to use
Experience: if you are context-insensitive, you might as well be flow-insensitive

Wednesday, November 30, 2011

History of points-to analysis

from Ryder and Rayside

Wednesday, November 30, 2011

