Motivating question

- Can the loops on the right be run in parallel?
- i.e., can different processors run different iterations in parallel?
- What needs to be true for a loop to be parallelizable?
- Iterations cannot interfere with each other
- No dependence between iterations

```c
for (i = 1; i < N; i++) {
    a[i] = b[i];
    c[i] = a[i - 1];
}
```

```
for (i = 1; i < N; i++) {
    a[i] = b[i];
    c[i] = a[i] + b[i - 1];
}
```

Dependences

- A flow dependence occurs when one iteration writes a location that a later iteration reads

```c
for (i = 1; i < N; i++) {
    a[i] = b[i];
    c[i] = a[i - 1];
}
```

```
for (i = 1; i < N; i++) {
    a[i] = b[i];
    c[i] = a[i] + b[i - 1];
}
```

Running a loop in parallel

- If there is a dependence in a loop, we cannot guarantee that the loop will run correctly in parallel
- What if the iterations run out of order?
 - Might read from a location before the correct value was written to it
- What if the iterations do not run in lock-step?
 - Same problem!

Other kinds of dependence

- **Anti dependence** – When an iteration reads a location that a later iteration writes (why is this a problem?)
  ```c
  for (i = 1; i < N; i++) {
      a[i - 1] = b[i];
      c[i] = a[i];
  }
  ```

- **Output dependence** – When an iteration writes a location that a later iteration writes (why is this a problem?)
  ```c
  for (i = 1; i < N; i++) {
      a[i] = b[i];
      a[i + 1] = c[i];
  }
  ```

Data dependence concepts

- Dependence source is the earlier statement (the statement at the tail of the dependence arrow)
- Dependence sink is the later statement (the statement at the head of the dependence arrow)

```
i = 1    i = 2    i = 3    i = 4    i = 5
```

```
W(a[1])  W(a[2])  W(a[3])  W(a[4])  W(a[5])
```

```
R(b[1])  R(b[2])  R(b[3])  R(b[4])  R(b[5])
```

```
W(c[1])  W(c[2])  W(c[3])  W(c[4])  W(c[5])
```

```
R(a[0])  R(a[1])  R(a[2])  R(a[3])  R(a[4])
```

```
W(a[1])  W(a[2])  W(a[3])  W(a[4])  W(a[5])
```

```
R(b[1])  R(b[2])  R(b[3])  R(b[4])  R(b[5])
```

```
W(c[1])  W(c[2])  W(c[3])  W(c[4])  W(c[5])
```

```
R(a[0])  R(a[1])  R(a[2])  R(a[3])  R(a[4])
```

Dependences can only go forward in time: always from an earlier iteration to a later iteration.
Using dependences

- If there are no dependences, we can parallelize a loop
- None of the iterations interfere with each other
- Can also use dependence information to drive other optimizations
 - Loop interchange
 - Loop fusion
 - (We will discuss these later)
- Two questions:
 - How do we represent dependences in loops?
 - How do we determine if there are dependences?

Representing dependences

- Focus on flow dependences for now
- Dependences in straight line code are easy to represent:
 - One statement writes a location (variable, array location, etc.) and another reads that same location
 - Can figure this out using reaching definitions
- What do we do about loops?
 - We often care about dependences between the same statement in different iterations of the loop!

```c
for (i = 1; i < N; i++) {
    a[i + 1] = a[i] + 2
}
```

Iteration space graphs

- Represent each dynamic instance of a loop as a point in a graph
- Draw arrows from one point to another to represent dependences

```c
for (i = 0; i < N; i++) {
    a[i + 2] = a[i]
}
```

- Step 1: Create nodes, 1 for each iteration
 - Note: not 1 for each array location!

```
0 -- 1 -- 2 -- 3 -- 4 -- 5
```

Iteration space graphs

- Step 2: Determine which array elements are read and written in each iteration
 - Read: R; Write: W

```
```

Iteration space graphs

- Step 3: Draw arrows to represent dependences
2-D iteration space graphs

- Can do the same thing for doubly-nested loops
- 2 loop counters

```c
for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
a[i+1][j-2] = a[i][j] + 1
```

Iteration space graphs

- Can also represent output and anti dependences
- Use different kinds of arrows for clarity. E.g.
 - for output
 - for anti
- Crucial problem: Iteration space graphs are potentially infinite representations!
 - Can we represent dependences in a more compact way?

Distance and direction vectors

- Compiler researchers have devised compressed representations of dependences
 - Capture the same dependences as an iteration space graph
 - May lose precision (show more dependences than the loop actually has)
- Two types
 - Distance vectors: captures the “shape” of dependences, but not the particular source and sink
 - Direction vectors: captures the “direction” of dependences, but not the particular shape

Distance vector

- Represent each dependence arrow in an iteration space graph as a vector
- Captures the “shape” of the dependence, but loses where the dependence originates

```plaintext
Distance vector for this iteration space: (2)
```

More complex example

- Can have multiple distance vectors

```c
for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
a[i+1][j-2] = a[i][j] + a[i-1][j-2]
```
More complex example

- Can have multiple distance vectors

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
a[i+1][j-2] = a[i][j] + a[i+1][j-2]

- Distance vectors
 - (1,-2)
 - (2,0)

Important point: order of vectors depends on order of loops, not use in arrays

Problems with distance vectors

- The preceding examples show how distance vectors can summarize all the dependences in a loop nest using just a small number of distance vectors
- Can't always summarize as easily
- Running example:
 for (i = 0; i < N; i++)
 a[2*i] = a[i];

Loss of precision

- What are the distance vectors for this code?
 - (1), (2), (3), (4) ...
- Note: we have information about the length of each vector, but not about the source of each vector
- What happens if we try to reconstruct the iteration space graph?

Loss of precision

- What are the distance vectors for this code?
 - (1), (2), (3), (4) ...
- Note: we have information about the length of each vector, but not about the source of each vector
- What happens if we try to reconstruct the iteration space graph?

Direction vectors

- The whole point of distance vectors is that we want to be able to succinctly capture the dependences in a loop nest
 - But in the previous example, not only did we add a lot of extra information, we still had an infinite number of distance vectors
 - Idea: summarize distance vectors, and save only the direction the dependence was in
 - (2,-1) → (+,−)
 - (0, 1) → (0, +)
 - (0,-2) → (0, −)
 - (can't happen; dependences have to be positive)
 - Notation: sometimes use '<' and '>' instead of '+' and '−'

Why use direction vectors?

- Direction vectors lose a lot of information, but do capture some useful information
 - Whether there is a dependence (anything other than a '0' means there is a dependence)
 - Which dimension and direction the dependence is in
 - Many times, the only information we need to determine if an optimization is legal is captured by direction vectors
- Loop parallelization
- Loop interchange
Loop parallelization

Loop-carried dependence

- The key concept for parallelization is the loop carried dependence
- A dependence that crosses loop iterations
- If there is a loop carried dependence, then that loop cannot be parallelized
- Some iterations of the loop depend on other iterations of the same loop

Examples

```
for (i = 0; i < N; i++)
a[2*i] = a[i];
```

Later iterations of i loop depend on earlier iterations

```
for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
a[i+1][j-2] = a[i][j] + 1
```

Later iterations of both i and j loops depend on earlier iterations

Some subtleties

- Dependences might only be carried over one loop!

```
for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
a[i][j+1] = a[i][j] + 1
```

- Can parallelize i loop, but not j loop

Direction vectors

- So how do direction vectors help?
 - If there is a non-zero entry for a loop dimension, that means that there is a loop carried dependence over that dimension
 - If an entry is zero, then that loop can be parallelized!
Improving parallelism

- Important point: any dependence can prevent parallelization
- Anti and output dependences are important, not just flow dependences
- But anti and output dependences can be removed by using more storage
- Like register renaming in out-of-order processors
- In principle, all anti and output dependences can be removed, but this is difficult
- Key question: when are there flow dependences?

```
for (i = 0; i < N; i++)
a[i] = a[i + 1] + 1
```

```
for (i = 0; i < N; i++)
aa[i] = a[i + 1] + 1
```

Data Dependence Tests

Problem formulation

- Given the loop nest:
  ```
  for (i = 0; i < N; i++)
      a[f(i)] = ...
      ... = a[g(i)]
  ```
- A dependence exists if there exist an integer \(i\) and an \(i'\) such that:
 - \(f(i) = g(i')\)
 - \(0 \leq i, i' < N\)
 - If \(i < i'\), write happens before read (flow dependence)
 - If \(i > i'\), write happens after read (anti dependence)

```
for (i = L; i < U; i += S)
  ...
  a[i] ...
```

```
for (i = 0; i < (U - L)/S; i += 1)
  ...
  a[S*i + L] ...
```

Loop normalization

- Loops that skip iterations can always be normalized to loops that don’t, so we only need to consider loops that have unit strides
- Note: this is essentially the reverse of linear test replacement

Diophantine equations

- An equation whose coefficients and solutions are all integers is called a Diophantine equation
- Our question:
  ```
f(i) = a*i + b
  g(i) = c*i + d
  Does f(i) = g(i') have a solution?
```
- \(f(i) = g(i') \Rightarrow ai + b = ci' + d \Rightarrow a_i^i + a_3 d = a_3\)

Solutions to Diophantine eqns

- An equation \(a_1i + a_2i + a_3 = a_3\) has a solution if \(\text{gcd}(a_1, a_2)\) evenly divides \(a_3\)
- Examples
 - \(15i + 6i - 9k = 12\) has a solution (\(\text{gcd} = 3\))
 - \(2i + 7i = 3\) has a solution (\(\text{gcd} = 1\))
 - \(9i + 6i = 10\) has no solution (\(\text{gcd} = 3\))
Why does this work?

- Suppose \(g \) is the gcd(a, b) in \(a^i + b^j = c \)
- Can rewrite equation as
 \[g(a'^i + b'^j) = c \]
 \[a' \cdot i + b' \cdot j = c/g \]
- \(a' \) and \(b' \) are integers, and relatively prime (gcd = 1) so by choosing \(i \) and \(j \) correctly, can produce any integer, but only integers
- Equation has a solution provided \(c/g \) is an integer

Finding the GCD

- Finding GCD with Euclid’s algorithm
 - Repeat
 \[
 a = a \mod b \\
 \text{swap } a \text{ and } b \\
 \text{until } b \text{ is } 0 \text{ (resulting } a \text{ is the gcd)}
 \]
 - Why? If \(g \) divides \(a \) and \(b \), then \(g \) divides \(a \mod b \)

Downsides to GCD test

- If \(f(i) = g(i') \) fails the GCD test, then there is no \(i, i' \) that can produce a dependence \(\rightarrow \) loop has no dependences
- If \(f(i) = g(i') \), there might be a dependence, but might not
 - \(i \) and \(i' \) that satisfy equation might fall outside bounds
 - Loop may be parallelizable, but cannot tell
- Unfortunately, most loops have gcd(a, b) = 1, which divides everything
- Other optimizations (loop interchange) can tolerate dependences in certain situations

Other dependence tests

- GCD test: doesn’t account for loop bounds, does not provide useful information in many cases
- Banerjee test (Utpal Banerjee): accurate test, takes directions and loop bounds into account
- Omega test (William Pugh): even more accurate test, precise but can be very slow
- Range test (Blume and Eigenmann): works for non-linear subscripts
- Compilers tend to perform simple tests and only perform more complex tests if they cannot determine existence of dependence

Other loop optimizations

- We’ve seen this one before
- Interchange doubly-nested loop to
 - Improve locality
 - Improve parallelism
 - Move parallel loop to outer loop (coarse grained parallelism)
Loop interchange legality

- We noted that loop interchange is not always legal, because it reorders a computation
- Can we use dependences to determine legality?

Loop interchange dependences

- Consider interchanging the following loop, with the dependence graph to the right:

 for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 a[i+1][j+2] = a[i][j] + 1

 • Distance vector (2, 1)
 • Direction vector (+, +)

 • Distance vector gets swapped!

Loop interchange legality

- Interchanging two loops swaps the order of their entries in distance/direction vectors
 - (0, +) → (+, 0)
 - (+, 0) → (0, +)
- But remember, we can’t have backwards dependences
 - (+, −) → (−, +)
- Illegal dependence → Loop interchange not legal!

Example of illegal interchange:

- Flow dependences turned into anti-dependences
- Result of computation will change!
Loop fusion/distribution

- Loop fusion: combining two loops into a single loop
 - Improves locality, parallelism
- Loop distribution: splitting a single loop into two loops
 - Can increase parallelism (turn a non-parallelizable loop into a parallelizable loop)
 - Legal as long as optimization maintains dependences
 - Every dependence in the original loop should have a dependence in the optimized loop
 - Optimized loop should not introduce new dependences

Fusion/distribution example

- Code 1:

  ```
  for (i = 0; i < N; i++)
    a[i - 1] = b[i]
  
  for (j = 0; j < N; j++)
    c[j] = a[j]
  ```

 - Dependence graph
 - All red iterations finish before blue iterations → flow dependence

- Code 2:

  ```
  for (i = 0; i < N; i++)
    a[i] = b[i]
  
  for (j = 0; j < N; j++)
    c[i] = a[i]
  ```

 - Dependence graph
 - i iterations finish before i+1 iterations → flow dependence now an anti dependence!

Fusion/distribution utility

```latex
\begin{align*}
&\text{Fusion:} \quad \begin{array}{c}
    \text{for (i = 0; i < N; i++)} \\
    a[i] = a[i - 1]
  \end{array} \\
&\text{Distribution:} \quad \begin{array}{c}
    \text{for (j = 0; j < N; j++)} \\
    b[j] = a[j]
  \end{array}
\end{align*}
```

- Fusion and distribution both legal
- Right code has better locality, but cannot be parallelized due to loop carried dependences
- Left code has worse locality, but blue loop can be parallelized