Control flow graphs and loop optimizations
Agenda

- Building control flow graphs
- Low level loop optimizations
 - Code motion
 - Strength reduction
 - Unrolling
- High level loop optimizations
 - Loop fusion
 - Loop interchange
 - Loop tiling
Moving beyond basic blocks

- Up until now, we have focused on single basic blocks
- What do we do if we want to consider larger units of computation
 - Whole procedures?
 - Whole program?
- Idea: capture *control flow* of a program
 - How control transfers between basic blocks due to:
 - Conditionals
 - Loops
Representation

- Use standard three-address code
- Jump targets are labeled
- Also label beginning/end of functions
- Want to keep track of *targets of jump statements*
 - Any statement whose execution may immediately follow execution of jump statement
 - *Explicit* targets: targets mentioned in jump statement
 - *Implicit* targets: statements that follow conditional jump statements
 - The statement that gets executed if the branch is not taken
Running example

\[
A = 4 \\
t1 = A \times B \\
\text{repeat} \{ \\
\quad t2 = t1/C \\
\quad \text{if} \ (t2 \geq W) \{ \\
\quad \quad M = t1 \times k \\
\quad \quad t3 = M + I \\
\quad \} \\
\quad H = I \\
\quad M = t3 - H \\
\} \text{ until } (T3 \geq 0)
\]
Running example

1. \(A = 4 \)
2. \(t1 = A \times B \)
3. \(t2 = t1 / C \)
4. if \(t2 < W \) goto L2
5. \(M = t1 \times k \)
6. \(t3 = M + I \)
7. \(H = I \)
8. \(M = t3 - H \)
9. if \(t3 \geq 0 \) goto L3
10. goto L1
11. L3: halt
Control flow graphs

• Divides statements into *basic blocks*

• Basic block: a maximal sequence of statements $l_0, l_1, l_2, \ldots, l_n$ such that if l_j and l_{j+1} are two adjacent statements in this sequence, then

 • The execution of l_j is always immediately followed by the execution of l_{j+1}

 • The execution of l_{j+1} is always immediately preceded by the execution of l_j

• Edges between basic blocks represent potential flow of control
CFG for running example

A = 4
\[t1 = A \times B \]

L1: \[t2 = \frac{t1}{c} \]
if \(t2 < W \) goto L2

M = \(t1 \times k \)
\[t3 = M + I \]

L2: \[H = I \]
M = \(t3 - H \)
if \(t3 \geq 0 \) goto L3

L3: halt

How do we build this automatically?
Constructing a CFG

• To construct a CFG where each node is a basic block
 • Identify *leaders*: first statement of a basic block
 • In program order, construct a block by appending subsequent statements up to, but not including, the next leader

• Identifying leaders
 • First statement in the program
 • Explicit target of any conditional or unconditional branch
 • Implicit target of any branch
Partitioning algorithm

• Input: set of statements, \(\text{stat}(i) = i^{\text{th}} \) statement in input

• Output: set of leaders, set of basic blocks where \(\text{block}(x) \) is the set of statements in the block with leader \(x \)

• Algorithm

\[
\text{leaders} = \{1\} \quad // \text{Leaders always includes first statement}
\]

\[
\text{for } i = 1 \text{ to } |n| \quad // |n| = \text{number of statements}
\]

\[
\text{if stat}(i) \text{ is a branch, then}
\]

\[
\quad \text{leaders} = \text{leaders} \cup \text{all potential targets}
\]

\[
\text{end for}
\]

\[
\text{worklist} = \text{leaders}
\]

\[
\text{while worklist not empty do}
\]

\[
\quad x = \text{remove earliest statement in worklist}
\]

\[
\quad \text{block}(x) = \{x\}
\]

\[
\text{for } (i = x + 1; i \leq |n| \text{ and } i \not\in \text{leaders}; i++)
\]

\[
\quad \text{block}(x) = \text{block}(x) \cup \{i\}
\]

\[
\text{end for}
\]

\[
\text{end while}
\]
Running example

1 A = 4
2 t1 = A * B
3 L1: t2 = t1 / C
4 if t2 < W goto L2
5 M = t1 * k
6 t3 = M + I
7 L2: H = I
8 M = t3 - H
9 if t3 ≥ 0 goto L3
10 goto L1
11 L3: halt

Leaders =
Basic blocks =
Running example

1 A = 4
2 t1 = A * B
3 L1: t2 = t1 / C
4 if t2 < W goto L2
5 M = t1 * k
6 t3 = M + I
7 L2: H = I
8 M = t3 - H
9 if t3 ≥ 0 goto L3
10 goto L1
11 L3: halt

Leaders = {1, 3, 5, 7, 10, 11}
Basic blocks = { {1, 2}, {3, 4}, {5, 6}, {7, 8, 9}, {10}, {11} }
Putting edges in CFG

- There is a directed edge from B_1 to B_2 if
 - There is a branch from the last statement of B_1 to the first statement (leader) of B_2
 - B_2 immediately follows B_1 in program order and B_1 does not end with an unconditional branch

- Input: $block$, a sequence of basic blocks

- Output: The CFG

  ```
  for i = 1 to |block|
    x = last statement of block(i)
    if stat(x) is a branch, then
      for each explicit target y of stat(x)
        create edge from block i to block y
      end for
    if stat(x) is not unconditional then
      create edge from block i to block i+1
    end for
  ```
\(A = 4 \)
\(t1 = A \times B \)

L1:
\(t2 = \frac{t1}{c} \)
if \(t2 < W \) goto L2

\(M = t1 \times k \)
\(t3 = M + I \)

L2:
\(H = I \)
\(M = t3 - H \)
if \(t3 \geq 0 \) goto L3

L3: halt

goto L1
Discussion

- Some times we will also consider the *statement-level* CFG, where each node is a statement rather than a basic block.
- Either kind of graph is referred to as a CFG.
- In statement-level CFG, we often use a node to explicitly represent *merging* of control.
- Control merges when two different CFG nodes point to the same node.
- Note: if input language is *structured*, front-end can generate basic block directly.
- “GOTO considered harmful”
A = 4

t1 = A * B

L1: t2 = t1 / c

if t2 < W goto L2

M = t1 * k

t3 = M + I

L2: H = I

M = t3 - H

if t3 ≤ 0 goto L3

L3: halt

goto L1
Loop optimization

- Low level optimization
 - Moving code around in a single loop
 - Examples: loop invariant code motion, strength reduction, loop unrolling

- High level optimization
 - Restructuring loops, often affects multiple loops
 - Examples: loop fusion, loop interchange, loop tiling
Low level loop optimizations

• Affect a single loop

• Usually performed at three-address code stage or later in compiler

• First problem: identifying loops
• Low level representation doesn’t have loop statements!
Identifying loops

• First, we must identify *dominators*

 • Node \(a \) dominates node \(b \) if every possible execution path that gets to \(b \) *must* pass through \(a \)

• Many different algorithms to calculate dominators – we will not cover how this is calculated

• A *back edge* is an edge from \(b \) to \(a \) when \(a \) dominates \(b \)

• The target of a back edge is a *loop header*
Natural loops

• Will focus on *natural loops* – loops that arise in structured programs

• For a node n to be in a loop with header h
 • n must be dominated by h
 • There must be a path in the CFG from n to h through a back-edge to h

• What are the back edges in the example to the right? The loop headers? The natural loops?
Loop invariant code motion

- Idea: some expressions evaluated in a loop never change; they are *loop invariant*
- Can move loop invariant expressions outside the loop, store result in temporary and just use the temporary in each iteration
- Why is this useful?
Identifying loop invariant code

- To determine if a statement
 \[s: a = b \text{ op } c \]
 is loop invariant, find all definitions of \(b \) and \(c \) that reach \(s \)

- A statement \(t \) defining \(b \) reaches \(s \) if there is a path from \(t \) to \(s \) where \(b \) is not re-defined

- \(s \) is loop invariant if both \(b \) and \(c \) satisfy one of the following
 - it is constant
 - all definitions that reach it are from outside the loop
 - only one definition reaches it and that definition is also loop invariant
Moving loop invariant code

• Just because code is loop invariant doesn’t mean we can move it!

```
for (...) if (*)
a = 5
b = a
```

• We can move a loop invariant statement \(a = b \text{ op } c\) if

 • The statement dominates all loop exits where \(a\) is live

 • There is only one definition of \(a\) in the loop

 • \(a\) is not live before the loop

• Move instruction to a `preheader`, a new block put right before loop header
Strength reduction

- Like strength reduction peephole optimization
- Peephole: replace expensive instruction like \(a \times 2 \) with \(a << 1 \)
- Replace expensive instruction, multiply, with a cheap one, addition
- Applies to uses of an \emph{induction variable}
- Opportunity: array indexing

```c
for (i = 0; i < 100; i++)
    A[i] = 0;
```

```c
i = 0;
L2: if (i >= 100) goto L1
    j = 4 \times i + &A
    *j = 0;
    i = i + 1;
    goto L2
L1:
```
Strength reduction

- Like strength reduction peephole optimization
- Peephole: replace expensive instruction like \(a \times 2\) with \(a \ll 1\)
- Replace expensive instruction, multiply, with a cheap one, addition
- Applies to uses of an \textit{induction variable}
- Opportunity: array indexing

```c
for (i = 0; i < 100; i++)
    A[i] = 0;
```

```c
i = 0; k = &A;
L2: if (i >= 100) goto L1
    j = k;
    *j = 0;
    i = i + 1; k = k + 4;
    goto L2
L1:
```
Induction variables

- A **basic induction variable** is a variable j
- whose only definition within the loop is an assignment of the form $j = j \pm c$, where c is loop invariant
- Intuition: the variable which determines number of iterations is usually an induction variable
- A **mutual induction variable** i may be
 - defined once within the loop, and its value is a linear function of some other induction variable j such that
 $$i = c_1 * j \pm c_2 \text{ or } i = j/c_1 \pm c_2$$
 where c_1, c_2 are loop invariant
- A **family** of induction variables include a basic induction variable and any related mutual induction variables
Strength reduction algorithm

- Let i be an induction variable in the family of the basic induction variable j, such that $i = c_1 \times j + c_2$
 - Create a new variable i'
 - Initialize in preheader

 $$i' = c_1 \times j + c_2$$
 - Track value of j. After $j = j + c_3$, perform

 $$i' = i' + (c_1 \times c_3)$$
 - Replace definition of i with

 $$i = i'$$
 - Key: c_1, c_2, c_3 are all loop invariant (or constant), so computations like $(c_1 \times c_3)$ can be moved outside loop
Linear test replacement

- After strength reduction, the loop test may be the only use of the basic induction variable
- Can now eliminate induction variable altogether
- Algorithm
 - If only use of an induction variable is the loop test and its increment, and if the test is always computed
 - Can replace the test with an equivalent one using one of the mutual induction variables

```plaintext
i = 2
for (; i < k; i++)
    j = 50*i
    ... = j

Strength reduction

i = 2; j' = 50 * i
for (; i < k; i++, j' += 50)
    ... = j'

Linear test replacement

i = 2; j' = 50 * i
for (; j' < 50*k; j' += 50)
    ... = j'
```
Loop unrolling

- Modifying induction variable in each iteration can be expensive
- Can instead unroll loops and perform multiple iterations for each increment of the induction variable
- What are the advantages and disadvantages?

```c
for (i = 0; i < N; i++)
    A[i] = ...;
```

Unroll by factor of 4

```c
for (i = 0; i < N; i += 4)
    A[i] = ...;
    A[i+1] = ...;
    A[i+2] = ...;
    A[i+3] = ...;
```
High level loop optimizations

- Many useful compiler optimizations require restructuring loops or sets of loops
- Combining two loops together (loop fusion)
- Switching the order of a nested loop (loop interchange)
- Completely changing the traversal order of a loop (loop tiling)
- These sorts of high level loop optimizations usually take place at the AST level (where loop structure is obvious)
Cache behavior

- Most loop transformations target cache performance
 - Attempt to increase *spatial* or *temporal* locality
 - Locality can be exploited when there is *reuse* of data (for temporal locality) or recent access of nearby data (for spatial locality)
- Loops are a good opportunity for this: many loops iterate through matrices or arrays
- Consider matrix-vector multiply example
 - Multiple traversals of vector: opportunity for spatial and temporal locality
 - Regular access to array: opportunity for spatial locality
Loop fusion

- Combine two loops together into a single loop
- Why is this useful?
- Is this always legal?

```plaintext
do I = 1, n
  c[i] = a[i]
end do

do I = 1, n
  b[i] = a[i]
end do
```
Loop interchange

• Change the order of a nested loop

• This is not always legal – it changes the order that elements are accessed!

• Why is this useful?

 • Consider matrix-matrix multiply when A is stored in column-major order (i.e., each column is stored in contiguous memory)

 for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 $y[i] += A[i][j] \times x[j]$
Loop interchange

• Change the order of a nested loop

• This is not always legal – it changes the order that elements are accessed!

• Why is this useful?

• Consider matrix-matrix multiply when A is stored in column-major order (i.e., each column is stored in contiguous memory)

\[
\begin{align*}
\text{for } (i = 0; i < N; i++) \\
\text{for } (j = 0; j < N; j++) \\
y[i] &\; += \; A[i][j] \; * \; x[j]
\end{align*}
\]
Loop tiling

- Also called “loop blocking”
- One of the more complex loop transformations
- Goal: break loop up into smaller pieces to get spatial and temporal locality
- Create new inner loops so that data accessed in inner loops fit in cache
- Also changes iteration order, so may not be legal

```c
for (i = 0; i < N; i++)
  for (j = 0; j < N; j++)
    y[i] += A[i][j] * x[j]

for (ii = 0; ii < N; ii += B)
  for (jj = 0; jj < N; jj += B)
    for (i = ii; i < ii+B; i++)
      for (j = jj; j < jj+B; j++)
        y[i] += A[i][j] * x[j]
```

Diagram of loop tiling.
Loop tiling

- Also called “loop blocking”
- One of the more complex loop transformations
- Goal: break loop up into smaller pieces to get spatial and temporal locality
- Create new inner loops so that data accessed in inner loops fit in cache
- Also changes iteration order, so may not be legal

```cpp
for (i = 0; i < N; i++)
    for (j = 0; j < N; j++)
        y[i] += A[i][j] * x[j]
```

```cpp
for (ii = 0; ii < N; ii += B)
    for (jj = 0; jj < N; jj += B)
        for (i = ii; i < ii+B; i++)
            for (j = jj; j < jj+B; j++)
                y[i] += A[i][j] * x[j]
```
In a real (Itanium) compiler

GFLOPS relative to -O2; bigger is better

92% of Peak Performance
Loop transformations

- Loop transformations can have dramatic effects on performance
- Doing this legally and automatically is very difficult!
- Researchers have developed techniques to determine legality of loop transformations and automatically transform the loop
 - Techniques like *unimodular transform framework* and *polyhedral framework*
 - These approaches will get covered in more detail in advanced compilers course