Control flow graphs and loop optimizations

Agenda

- Building control flow graphs
- Low level loop optimizations
 - Code motion
 - Strength reduction
 - Unrolling
- High level loop optimizations
 - Loop fusion
 - Loop interchange
 - Loop tiling

Moving beyond basic blocks

- Up until now, we have focused on single basic blocks
- What do we do if we want to consider larger units of computation
- Whole procedures?
- Whole program?
- Idea: capture control flow of a program
- How control transfers between basic blocks due to:
 - Conditionals
 - Loops

Representation

- Use standard three-address code
- Jump targets are labeled
- Also label beginning/end of functions
- Want to keep track of targets of jump statements
- Any statement whose execution may immediately follow execution of jump statement
- Explicit targets: targets mentioned in jump statement
- Implicit targets: statements that follow conditional jump statements
- The statement that gets executed if the branch is not taken

Running example

1. A = 4
2. t1 = A * B
3. repeat {
 4. t2 = t1 / C
 5. if (t2 ≥ W) {
 6. M = t1 * k
 7. t3 = M + I
 8. }
 9. H = I
 10. M = t3 - H
5. until (T3 ≥ Ø)
Control flow graphs

- Divides statements into basic blocks
- Basic block: a maximal sequence of statements $I_0, I_1, I_2, \ldots, I_n$ such that if I_i and I_{i+1} are two adjacent statements in this sequence, then
 - The execution of I_i is always immediately followed by the execution of I_{i+1}
 - The execution of I_{i+1} is always immediately preceded by the execution of I_i
- Edges between basic blocks represent potential flow of control

CFG for running example

Constructing a CFG

- To construct a CFG where each node is a basic block
- Identify leaders: first statement of a basic block
- In program order, construct a block by appending subsequent statements up to, but not including, the next leader
- Identifying leaders
 - First statement in the program
 - Explicit target of any conditional or unconditional branch
 - Implicit target of any branch

Partitioning algorithm

- Input: set of statements, $\text{stat}(i)$ = ith statement in input
- Output: set of leaders, set of basic blocks where $\text{block}(x)$ is the set of statements in the block with leader x
- Algorithm
 - $\text{leaders} = \{1\}$
 - for $i = 1$ to $|n|$ do
 - if $\text{stat}(i)$ is a branch, then
 - $\text{leaders} = \text{leaders} \cup \text{all potential targets}$
 - end if
 - end for
 - $\text{worklist} = \text{leaders}$
 - while worklist not empty do
 - $x = \text{remove earliest statement in worklist}$
 - $\text{block}(x) = \{x\}$
 - for $i = x + 1$ to $|n|$ and $i \notin \text{leaders}$ do
 - $\text{block}(y) = \text{block}(y) \cup \{y\}$
 - end for
 - end while

Running example

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A = 4</td>
</tr>
<tr>
<td>2</td>
<td>$t_1 = A \ast B$</td>
</tr>
<tr>
<td>3</td>
<td>L_1: $t_2 = t_1 / C$</td>
</tr>
<tr>
<td>4</td>
<td>if $t_2 < W$ goto L_2</td>
</tr>
<tr>
<td>5</td>
<td>$M = t_1 \ast k$</td>
</tr>
<tr>
<td>6</td>
<td>$t_3 = M + I$</td>
</tr>
<tr>
<td>7</td>
<td>L_2: $H = I$</td>
</tr>
<tr>
<td>8</td>
<td>$M = t_3 - H$</td>
</tr>
<tr>
<td>9</td>
<td>if $t_3 \geq 0$ goto L_3</td>
</tr>
<tr>
<td>10</td>
<td>L_3: halt</td>
</tr>
</tbody>
</table>

Leaders = \{1, 3, 5, 7, 10, 11\}
Basic blocks = \{\{1, 2\}, \{3, 4\}, \{5, 6\}, \{7, 8, 9\}, \{10\}, \{11\}\}
Putting edges in CFG

- There is a directed edge from B_1 to B_2 if
 - There is a branch from the last statement of B_1 to the first statement (leader) of B_2
 - B_2 immediately follows B_1 in program order and B_1 does not end with an unconditional branch
- Input: block, a sequence of basic blocks
- Output: The CFG

\[
\begin{align*}
\text{for } i = 1 \text{ to } |\text{block}| & \\
\text{x = last statement of block}(i) & \\
\text{if } \text{stat}(x) \text{ is a branch, then} & \\
\text{for each explicit target } y \text{ of } \text{stat}(x) & \\
\text{create edge from block } i \text{ to block } y & \\
\text{end for} & \\
\text{if } \text{stat}(x) \text{ is not unconditional then} & \\
\text{create edge from block } i \text{ to block } i+1 & \\
\text{end for} &
\end{align*}
\]

Discussion

- Some times we will also consider the statement-level CFG, where each node is a statement rather than a basic block
 - Either kind of graph is referred to as a CFG
 - In statement-level CFG, we often use a node to explicitly represent merging of control
 - Control merges when two different CFG nodes point to the same node
- Note: if input language is structured, front-end can generate basic block directly
 - “GOTO considered harmful”

Low level loop optimizations

- Low level optimization
 - Moving code around in a single loop
 - Examples: loop invariant code motion, strength reduction, loop unrolling
 - High level optimization
 - Restructuring loops, often affects multiple loops
 - Examples: loop fusion, loop interchange, loop tiling

Low level loop optimizations

- Affect a single loop
 - Usually performed at three-address code stage or later in compiler
- First problem: identifying loops
 - Low level representation doesn’t have loop statements!
Identifying loops

- First, we must identify dominators
- Node a dominates node b if every possible execution path that gets to b must pass through a
- Many different algorithms to calculate dominators – we will not cover how this is calculated
- A back edge is an edge from b to a when a dominates b
- The target of a back edge is a loop header

Natural loops

- Will focus on natural loops – loops that arise in structured programs
- For a node n to be in a loop with header h
 - n must be dominated by h
 - There must be a path in the CFG from n to h through a back-edge to h
- What are the back edges in the example to the right? The loop headers? The natural loops?

Loop invariant code motion

- Idea: some expressions evaluated in a loop never change; they are loop invariant
- Can move loop invariant expressions outside the loop, store result in temporary and just use the temporary in each iteration
- Why is this useful?

Identifying loop invariant code

- To determine if a statement s: $a = b \op c$ is loop invariant, find all definitions of b and c that reach s
- A statement t defining b reaches s if there is a path from t to s where b is not re-defined
- s is loop invariant if both b and c satisfy one of the following
 - it is constant
 - all definitions that reach it are from outside the loop
 - only one definition reaches it and that definition is also loop invariant

Moving loop invariant code

- Just because code is loop invariant doesn’t mean we can move it!
- We can move a loop invariant statement $a = b \op c$ if
 - The statement dominates all loop exits where a is live
 - There is only one definition of a in the loop
 - a is not live before the loop
- Move instruction to a preheader, a new block put right before loop header

Strength reduction

- Like strength reduction peephole optimization
- Peephole: replace expensive instruction like $a = 2 \times a$ with $a << 1$
- Replace expensive instruction, multiply, with a cheap one, addition
- Applies to uses of an induction variable
- Opportunity: array indexing
Strength reduction

- Like strength reduction peephole optimization
- Peephole: replace expensive instruction like a * 2 with a << 1
- Replace expensive instruction, multiply, with a cheap one, addition
- Applies to uses of an induction variable
- Opportunity: array indexing

for (i = 0; i < 100; i++)
A[i] = 0;

i = 0; k = 0A;
L2: if (i >= 100) goto L1
j = k;
*j = 0;
i = i + 1; k = k + 4;
goto L2
L1:

Induction variables

- A basic induction variable is a variable j
- whose only definition within the loop is an assignment of the form j = j ± c, where c is loop invariant
- Intuition: the variable which determines number of iterations is usually an induction variable
- A mutual induction variable i may be
- defined once within the loop, and its value is a linear function of some other induction variable j such that
 j = c1 * j ± c2 or i = j/c1 ± c2
 where c1, c2 are loop invariant
- A family of induction variables include a basic induction variable and any related mutual induction variables

Linear test replacement

- After strength reduction, the loop test may be the only use of the basic induction variable
- Can now eliminate induction variable altogether
- Algorithm
 - If only use of an induction variable is the loop test and its increment, and if the test is always computed
 - Can replace the test with an equivalent one using one of the mutual induction variables

for (; i < k; i++)
j = 50*i
... = j
for (; i < k; i++, j':= 50)
... = j'
for (; i':= 50*k; j':= 50)
... = j'

Loop unrolling

- Modifying induction variable in each iteration can be expensive
- Can instead unroll loops and perform multiple iterations for each increment of the induction variable
- What are the advantages and disadvantages?

for (i = 0; i < N; i++)
A[i] = ...

Unroll by factor of 4

for (i = 0; i < N; i += 4)
A[i] = ...
A[i+1] = ...
A[i+2] = ...
A[i+3] = ...

High level loop optimizations

- Many useful compiler optimizations require restructuring loops or sets of loops
- Combining two loops together (loop fusion)
- Switching the order of a nested loop (loop interchange)
- Completely changing the traversal order of a loop (loop tiling)
- These sorts of high level loop optimizations usually take place at the AST level (where loop structure is obvious)
Cache behavior

- Most loop transformations target cache performance
- Attempt to increase spatial or temporal locality
- Locality can be exploited when there is reuse of data (for temporal locality) or recent access of nearby data (for spatial locality)
- Loops are a good opportunity for this; many loops iterate through matrices or arrays
- Consider matrix-vector multiply example
 - Multiple traversals of vector: opportunity for spatial and temporal locality
 - Regular access to array: opportunity for spatial locality
- Small changes in iteration order may not be legal

\[
\begin{align*}
\text{for } (i = 0; i < N; i++) & \\
\quad & \text{for } (j = 0; j < N; j++) \\
\quad & \quad y[i] += A[i][j] \times x[j]
\end{align*}
\]

Loop fusion

- Combine two loops together into a single loop
- Why is this useful?
- Is this always legal?

\[
\begin{align*}
\text{for } (i = 0; i < N; i++) & \\
\quad & \text{for } (j = 0; j < N; j++) \\
\quad & \quad y[i] += A[i][j] \times x[j]
\end{align*}
\]

Loop interchange

- Change the order of a nested loop
- This is not always legal – it changes the order that elements are accessed!
- Why is this useful?
 - Consider matrix-matrix multiply when A is stored in column-major order (i.e., each column is stored in contiguous memory)

\[
\begin{align*}
\text{for } (i = 0; i < N; i++) & \\
\quad & \text{for } (j = 0; j < N; j++) \\
\quad & \quad y[i] += A[i][j] \times x[j]
\end{align*}
\]

Loop tiling

- Also called “loop blocking”
- One of the more complex loop transformations
- Goal: break loop up into smaller pieces to get spatial and temporal locality
- Create new inner loops so that data accessed in inner loops fit in cache
- Also changes iteration order, so may not be legal

\[
\begin{align*}
\text{for } (i = 0; i < N; i++) & \\
\quad & \text{for } (j = 0; j < N; j++) \\
\quad & \quad y[i] += A[i][j] \times x[j]
\end{align*}
\]
In a real (Itanium) compiler

Loop transformations

- Loop transformations can have dramatic effects on performance
- Doing this legally and automatically is very difficult!
- Researchers have developed techniques to determine legality of loop transformations and automatically transform the loop
 - Techniques like unimodular transform framework and polyhedral framework
 - These approaches will get covered in more detail in advanced compilers course

Friday, October 21, 2011