
Processing control
structures

Monday, September 26, 2011

If statements

if <bool_expr_1> then
<stmt_list_1>

elseif <bool_expr_2> then
 <stmt_list_2>
...
else
<stmt_list_3>

endif

Monday, September 26, 2011

If statements

stmt_list_1bool_expr_1

if_stmt

elseif

cond then_block else_list

stmt_list_2bool_expr_2 else

cond then_block next ...

stmt_list_3

then_block

Monday, September 26, 2011

Generating code for ifs

if <bool_expr_1> then
<stmt_list_1>

elseif <bool_expr_2> then
 <stmt_list_2>
else
<stmt_list_3>

endif

<code for bool_expr_1>
j<!op> ELSE_1
<code for stmt_list_1>
jmp OUT

ELSE_1:
<code for bool_expr_2>
j<!op> ELSE
<code for stmt_list_2>
jmp OUT

ELSE:
<code for stmt_list_3>

OUT:

Monday, September 26, 2011

Notes on code generation

• The <op> in j<!op> is dependent on the type of comparison
you are doing in <bool_expr>

• When you generate JUMP instructions, you should also
generate the appropriate LABELs

• But you may not put the LABEL into the code immediately

• e.g., the OUT label (when should you create this? When
should you put this in code?)

• Instead, generate the labels when you first process the if
statement (i.e., before you process the children) so that it’s
available when necessary

• Remember: labels have to be unique!

Monday, September 26, 2011

Directly generating binary code
• Recall difference between assembly code and machine code

• Assembly code must be processed by assembler, machine code
directly executable

• One job of assembler: decide actual addresses to jump to instead
of labels

• So what happens if we generate binary directly?

• Need to insert JMP instructions before knowing where the label
will be

• Solution: backpatching

• Store offset of JMP instruction in semantic record

• When label is created, access JMP instruction and “patch up”
jump target

Monday, September 26, 2011

Processing Loops

Monday, September 26, 2011

While loops

while <bool_expr> do
<stmt_list>

end
stmt_listbool_expr

while_stmt

cond block

Monday, September 26, 2011

Generating code for do-while
loops

do
<stmt_list>

while <bool_expr>;

LOOP:
<stmt_list>
<bool expr>
j<op> LOOP

OUT:

• Note that we j<op> instead of j<!
op>

• Jump when the expression is
true

• Re-evaluate expression each time

• Question: what would code for
“while” loop look like?

Monday, September 26, 2011

For loops

for (<init_stmt>;<bool_expr>;<incr_stmt>)
<stmt_list>

end

for_stmt

bool_exprinit_stmt incr_expr stmt_list

init cond next_stmt body

Monday, September 26, 2011

Generating code: for loops

• Execute init_stmt first

• Jump out of loop if
bool_expr is false

• Execute incr_stmt after
block, jump back to top
of loop

• Question: Why do we
have the INCR label?

for (<init_stmt>;<bool_expr>;<incr_stmt>)
<stmt_list>

end

<init_stmt>
LOOP:

<bool_expr>
j<!op> OUT
<stmt_list>

INCR:
<incr_stmt>
jmp LOOP

OUT:

Monday, September 26, 2011

continue and break statements
• Continue statements: skip

past rest of block, perform
incr_stmt and restart loop

• Break statements: jump out
of loop (do not execute
incr_stmt)

• Caveats:

• Code for stmt_list is
generated earlier–where
do we jump?

• Keep track of “loop
depth” as you descend
through AST

for (<init_stmt>;<bool_expr>;<incr_stmt>)
<stmt_list>

end

<init_stmt>
LOOP:

<bool_expr>
j<!op> OUT
<stmt_list>

INCR:
<incr_stmt>
jmp LOOP

OUT:

Monday, September 26, 2011

Switch statements

switch (<expr>)
case <const_list>: <stmt_list>
case <const_list>: <stmt_list>
...
default: <stmt_list>

end

switch_stmt

case_list

case_stmt

const_list stmt_list

case_stmt

const_list stmt_list

option block

next_case

option block

stmt_list

cases default_block

Monday, September 26, 2011

Switch statements

• Generated code should
evaluate <expr> and make
sure that some case matches
the result

• Question: how to decide
where to jump?

switch (<expr>)
case <const_list>: <stmt_list>
case <const_list>: <stmt_list>
...
default: <stmt_list>

end

Monday, September 26, 2011

Deciding where to jump

• Problem: do not know which label to jump to until switch
expression is evaluated

• Use a jump table: an array indexed by case values, contains
address to jump to

• If table is not full (i.e., some possible values are skipped),
can point to a default clause

• If default clause does not exist, this can point to error
code

• Problems

• If table is sparse, wastes a lot of space

• If many choices, table will be very large

Monday, September 26, 2011

Jump table example
Consider the code:
((xxxx) is address of code)

Case x is
(0010) When 0: stmts
(0017) When 1: stmts
(0192) When 2: stmts
(0198) When 3 stmts;
(1000) When 5 stmts;
(1050) Else stmts;

Jump table has 6 entries:

0 JUMP 0010
1 JUMP 0017
2 JUMP 0192
3 JUMP 0198
4 JUMP 1050
5 JUMP 1000

Table only has one
Unnecessary row
(for choice 4)

Monday, September 26, 2011

0 JUMP 0010
1 JUMP 0017
2 JUMP 0192
3 JUMP 0198
4 JUMP 1050
. . . JUMP 1050
986 JUMP 1050
987 JUMP 1000

Jump table example
Consider the code:
((xxxx) Is address of code)

Case x is
(0010) When 0: stmts0
(0017) When 1: stmts1
(0192) When 2: stmts2
(0198) When 3 stmts3
(1000) When 987 stmts4
(1050) When others stmts5

Jump table has 6 entries:

Table only has 983 unnecessary rows.
Doesn’t appear to be the right thing to
do! NOTE: table size is
proportional to range of choice
clauses, not number of clauses!

Monday, September 26, 2011

Do a binary search
Consider the code: ((xxxx) Is
address of code)

Case x is
(0010) When 0: stmts0
(0017) When 1: stmts1
(0192) When 2: stmts2
(0198) When 3 stmts3
(1000) When 987 stmts4
(1050) When others stmts5

Jump table has 6 entries:

0 JUMP 0010
1 JUMP 0017
2 JUMP 0192
3 JUMP 0198

987 JUMP 1000

Perform a binary search on the table. If the entry is found, then
jump to that offset. If the entry isn’t found, jump to others
clause. O(log n) time, n is the size of the table, for each jump.

Monday, September 26, 2011

Linear search example
Consider the code:
(xxxx) Is offset of local
Code start from the
Jump instruction

Case x is
(0010) When 0: stmts
(0017) When 1: stmts
(0192) When 2: stmts
(1050) When others stmts;

If there are a small number of
choices, then do an in-line linear
search. A straightforward way to do
this is generate code analogous to an
IF THEN ELSE.

If (x == 0) then stmts1;
Elseif (x = 1) then stmts2;
Elseif (x = 2) then stmts3;
Else stmts4;

O(n) time, n is the size of the table, for each jump.

Monday, September 26, 2011

Dealing with jump tables
switch (<expr>)
case <const_list>: <stmt_list>
case <const_list>: <stmt_list>
...
default: <stmt_list>

end

<expr>
<code for jump table>

LABEL0:
<stmt_list>

LABEL1:
<stmt_list>

...
DEFAULT:
<stmt_list>

OUT:

• Generate labels, code, then build
jump table

• Put jump table after generated
code

• Why do we need the OUT label?

• In case of break statements

Monday, September 26, 2011

Case statements

• As in LITTLE

• What makes them different from switch statements?

• Arbitrary expressions in each CASE

• How should you generate code for this?

Monday, September 26, 2011

