More Dataflow Analysis

Recall steps to building analysis

- Step 1: Choose lattice
- Step 2: Choose direction of dataflow (forward or backward)
- Step 3: Create monotonic transfer function
- Step 4: Choose confluence operator (i.e., what to do at merges)
 - Either join or meet in the lattice
- Let's walk through these steps for a new analysis

Liveness analysis

- Which variables are live at a particular program point?
- Used all over the place in compilers
 - Register allocation
 - Loop optimizations

Choose lattice

- What do we want to know?
 - At each program point, want to maintain the set of variables that are live
- Lattice elements: sets of variables
- Natural choice for lattice: powerset of variables!

Choose dataflow direction

- A variable is live if it is used later in the program without being redefined
 - At a given program point, we want to know information about what happens later in the program
 - This means that liveness is a backwards analysis
 - Recall that we did liveness backwards when we looked at single basic blocks

Create x-fer functions

- What do we do for a statement like:
 \[x = y + z \]
- If \(x \) was live “before” (i.e., live after the statement), it isn’t now (i.e., is not live before the statement)
- If \(y \) and \(z \) were not live “before,” they are now
- What about:
 \[x = x \]
Create x-fer functions

- Let’s generalize
- For any statement \(s \), we can look at which live variables are killed, and which new variables are made live (generated)
- Which variables are killed in \(s \)?
 - The variables that are defined in \(s \): \(\text{DEF}(s) \)
- Which variables are made live in \(s \)?
 - The variables that are used in \(s \): \(\text{USE}(s) \)
- If the set of variables that are live after \(s \) is \(X \), what is the set of variables live before \(s \)?
 \[
 T_s(X) = \text{use}(s) \cup (X - \text{def}(s))
 \]
- Is this monotonic?

Dealing with aliases

- Aliases, as usual, cause problems
- Consider
 \[
 \begin{aligned}
 \text{int} & \ x, \ y \\
 \text{int} & \ *z, \ *w; \\
 \text{if} \ (\ldots) & \ z = &y \ \text{else} \ z = &x \\
 \text{if} \ (\ldots) & \ w = &y \ \text{else} \ w = &x \\
 &*z = *w; \ //\text{which variable is defined? which is used?}
 \end{aligned}
 \]
- What should \(\text{USE}(*z = *w) \) and \(\text{DEF}(*z = *w) \) be?
- Keep in mind: the goal is to get a list of variables that may be live at a program point
- For now, assume there is no aliasing

Dealing with function calls

- Similar problem as aliases:
 \[
 \text{int} \ foo(\text{int} &x, \ \text{int} &y); \ //\text{pass by reference!}
 \]
 \[
 \text{void} \ \text{main}() \ { \\
 \text{int} \ x, \ y, \ z; \\
 z = \ foo(x, y); \\
 }
 \]
- Simple solution: functions can do anything – redefine variables, use variables
 - So \(\text{DEF}(\text{foo}()) \) is \(\{ \} \) and \(\text{USE}(\text{foo}()) \) is \(\mathbb{V} \)
- Real solution: interprocedural analysis, which determines what variables are used and defined in \(\text{foo} \)

Choose confluence operator

- What happens at a merge point?
 - The variables live in to a merge point are the variables that are live along either branch
 - Confluence operator: Set union (\(\cup \)) of all live sets of outgoing edges
 \[
 T_{\text{merge}} = \bigcup_{X \in \text{succ}(\text{merge})} X
 \]

How to initialize analysis?

- At the end of the program, we know no variables are live → value at exit point is \(\{ \} \)
- What about elsewhere in the program?
 - We should initialize other sets to \(\{ \} \)
 - This is consistent with our approach to finding the least fixpoint
An alternate approach

- Dataflow analyses like live-variable analysis are bit-vector analyses: are even more structured than regular dataflow analysis
- Consistent lattice: powerset
- Consistent transfer functions
- Many sources only talk about bitvector dataflow

Bit-vector lattices

- Consider a single element, V, of the powerset(S) lattice
- Each item in S either appears in V or does not: can represent using a single bit
- Can represent V as a bit vector
 - \{a, b, c\} = <1, 1, 1>
 - \{\} = <0, 0, 0>
 - \{b, c\} = <0, 1, 1>
- \(\cup\) and \(\cap\) (which are just \(\lor\) and \(\land\)) are simply bitwise

Eliminating merge nodes

- Many dataflow presentations do not use explicit merge nodes in CFG
- How do we handle this?
- Problem: now a node may be a statement and a merge point
- Solution: compose confluence operator and transfer functions
- Note: non-merge nodes have just one successor; this equation works for all nodes!

\[
T(s) = \text{use}(s) \cup (\bigcup_{X \in \text{succ}(s)} X) - \text{def}(s)
\]

Simplifying matters

- Let's split this up into two different sets
 - OUT(s): the set of variables that are live immediately after a statement is executed
 - IN(s): the set of variables that are live immediately before a statement is executed

\[
\begin{align*}
\text{IN}(s) &= \text{use}(s) \cup (\text{OUT}(s) - \text{def}(s)) \\
\text{OUT}(s) &= \bigcup_{t \in \text{succ}(s)} \text{IN}(t)
\end{align*}
\]

Generalizing

- USE(s) are the variables that become live due to a statement—they are generated by this statement
- DEF(s) are the variables that stop being live due to a statement—they are killed by this statement

\[
\begin{align*}
\text{IN}(s) &= \text{gen}(s) \cup (\text{OUT}(s) - \text{kill}(s)) \\
\text{OUT}(s) &= \bigcup_{t \in \text{succ}(s)} \text{IN}(t)
\end{align*}
\]

Bit-vector analyses

- A bit-vector analysis is any analysis that
 - Operates over the powerset lattice, ordered by \(\cup\) and with \(\lor\) and \(\land\) as its meet and join
 - Has transfer functions that can be written in the form:

\[
\begin{align*}
\text{IN}(s) &= \text{gen}(s) \cup (\text{OUT}(s) - \text{kill}(s)) \\
\text{OUT}(s) &= \bigcup_{t \in \text{succ}(s)} \text{IN}(t)
\end{align*}
\]

- Are these transfer functions monotonic? (Hint: if \(f\) and \(g\) are monotonic, is \(f \circ g\) monotonic?)
- \text{gen} and \text{kill} are dependent on the statement, but not on \text{IN} or \text{OUT}
- Things are a little different for forward analyses, and some analyses use \(\cap\) instead of \(\cup\)
Reaching definitions

- What definitions of a variable reach a particular program point
 - A definition of variable \(x \) from statement \(s \) reaches a statement \(t \) if there is a path from \(s \) to \(t \) where \(x \) is not redefined
- Especially important if \(x \) is used in \(t \)
 - Used to build def-use chains and use-def chains, which are key building blocks of other analyses
 - Used to determine dependences: if \(x \) is defined in \(s \) and that definition reaches \(t \) then there is a flow dependence from \(s \) to \(t \)
- We used this to determine if statements were loop invariant
 - All definitions that reach an expression must originate from outside the loop, or themselves be invariant

Creating a reaching-def analysis

- Can we use a powerset lattice?

 - At each program point, we want to know which definitions have reached a particular point
 - Can use powerset of set of definitions in the program
 - \(V \) is set of variables, \(S \) is set of program statements
 - Definition: \(d \in V \times S \)
 - Use a tuple, \(<v, s> \)
 - How big is this set?
 - At most \(|V \times S|\) definitions

Forward or backward?

- What do you think?

Choose confluence operator

- Remember: we want to know if a definition may reach a program point
- What happens if we are at a merge point and a definition reaches from one branch but not the other?
 - We don't know which branch is taken!
 - We should union the two sets — any of those definitions can reach
- We want to avoid getting too many reaching definitions — should start sets at \(*\).

Transfer functions

- Forward analysis, so need a slightly different formulation
 - Merged data flowing into a statement
 \[
 IN(s) = \bigcup_{t \in \text{pred}(s)} OUT(t) \\
 OUT(s) = gen(s) \cup (IN(s) - kill(s))
 \]
 - What are gen and kill?
 - \(gen(s) \): the set of definitions that may occur at \(s \)
 - e.g., \(gen(s_1: x = e) = <s_1, x> \)
 - \(kill(s) \): all previous definitions of variables that are definitely redefined by \(s \)
 - e.g., \(kill(s_1: x = e) = <s_1, x> \)

Available expressions

- We've seen this one before
- What is the lattice? powerset of all expressions appearing in a procedure
- Forward or backward?
- Confluence operator?
Transfer functions for meet

- What do the transfer functions look like if we are doing a meet?

\[
IN(S) = \bigcap_{t \in pred(s)} OUT(t) \\
OUT(S) = gen(s) \cup (IN(S) - kill(s))
\]

- gen(s): expressions that must be computed in this statement
- kill(s): expressions that use variables that may be defined in this statement
- Note difference between these sets and the sets for reaching definitions or liveness
- Insight: gen and kill must never lead to incorrect results
- Must not decide an expression is available when it isn’t, but OK to be safe and say it isn’t
- Must not decide a definition doesn’t reach, but OK to overestimate and say it does

Analysis initialization

- Remember our formalization
- If we start with everything initialized to \(\bot\), we compute the least fixpoint
- If we start with everything initialized to \(\top\), we compute the greatest fixpoint
- Which do we want? It depends!
 - Reaching definitions: a definition that may reach this point
 - We want to have as few reaching definitions as possible \(\Rightarrow\) use least fixpoint
 - Available expressions: an expression that was definitely computed earlier
 - We want to have as many available expressions as possible \(\Rightarrow\) use greatest fixpoint
 - Rule of thumb: if confluence operator is \(\bot\), start with \(\bot\), otherwise start with \(\top\)

Analysis initialization (II)

- The set at the entry of a program (for forward analyses) or exit of a program (for backward analyses) may be different
- One way of looking at this: start statement and end statement have their own transfer functions
- General rule for bitvector analyses: no information at beginning of analysis, so first set is always \(\{\}\)

Very busy expressions

- An expression is very busy if it is computed on every path that leads from a program point
- Why does this matter?
 - Can calculate very busy expressions early without wasting computation (since the expression is used at least once on every outgoing path) – this can save space
- Good candidates for loop invariant code motion

Four types of dataflow

- Analysis can either be forward or backward
- Analysis can either be over all paths or over any path
 - All paths: merges consider values from all paths
 - Any path: merges consider values from any path

<table>
<thead>
<tr>
<th></th>
<th>All paths</th>
<th>Any path</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward</td>
<td>available expressions</td>
<td>reaching definitions</td>
</tr>
<tr>
<td>Backward</td>
<td>very busy expressions</td>
<td>liveness analysis</td>
</tr>
</tbody>
</table>
- What kind of analysis is constant propagation?