Dataflow Analysis
Program optimizations

• So far we have talked about different kinds of optimizations
 • Peephole optimizations
 • Local common sub-expression elimination
 • Loop optimizations

• What about *global optimizations*
 • Optimizations across multiple basic blocks (usually a whole procedure)
 • Not just a single loop
Useful optimizations

• Common subexpression elimination (global)
 • Need to know which expressions are available at a point

• Dead code elimination
 • Need to know if the effects of a piece of code are never needed, or if code cannot be reached

• Constant folding
 • Need to know if variable has a constant value

• Loop invariant code motion
 • Need to know where and when variables are live

• So how do we get this information?
Dataflow analysis

• Framework for doing compiler analyses to drive optimization
• Works across basic blocks
• Examples
 • Constant propagation: determine which variables are constant
 • Liveness analysis: determine which variables are live
 • Available expressions: determine which expressions are have valid computed values
 • Reaching definitions: determine which definitions could “reach” a use
Example: constant propagation

- Goal: determine when variables take on constant values
- Why? Can enable many optimizations
 - Constant folding
    ```
x = 1;
y = x + 2;
if (x > z) then y = 5
... y ...
```
 - Create dead code
    ```
x = 1;
y = x + 2;
if (y > x) then y = 5
... y ...
```
Example: constant propagation

- Goal: determine when variables take on constant values
- Why? Can enable many optimizations

 - Constant folding

 \[
 \begin{align*}
 x &= 1; \\
 y &= x + 2; \\
 \text{if } (x > z) \text{ then } y &= 5 \\
 \ldots & y \ldots
 \end{align*}
 \]

 \[
 \begin{align*}
 x &= 1; \\
 y &= 3; \\
 \text{if } (x > z) \text{ then } y &= 5 \\
 \ldots & y \ldots
 \end{align*}
 \]

 - Create dead code

 \[
 \begin{align*}
 x &= 1; \\
 y &= x + 2; \\
 \text{if } (y > x) \text{ then } y &= 5 \\
 \ldots & y \ldots
 \end{align*}
 \]

 \[
 \begin{align*}
 x &= 1; \\
 y &= x + 2; \\
 \text{if } (y > x) \text{ then } y &= 5 \\
 \ldots & y \ldots
 \end{align*}
 \]
Example: constant propagation

- **Goal:** determine when variables take on constant values
- **Why?** Can enable many optimizations
 - **Constant folding**

    ```
    x = 1;
y = x + 2;
if (x > z) then y = 5
... y ...
    ```
    ```
    x = 1;
y = 3;
if (x > z) then y = 5
... y ...
    ```
 - **Create dead code**

    ```
    x = 1;
y = x + 2;
if (y > x) then y = 5
... y ...
    ```
    ```
    x = 1;
y = 3; //dead code
if (true) then y = 5 //simplify!
... y ...
    ```
How can we find constants?

- Ideal: run program and see which variables are constant
 - Problem: variables can be constant with some inputs, not others – need an approach that works for all inputs!
 - Problem: program can run forever (infinite loops?) – need an approach that we know will finish
- Idea: run program symbolically
 - Essentially, keep track of whether a variable is constant or not constant (but nothing else)
Overview of algorithm

• Build control flow graph
 • We’ll use statement-level CFG (with merge nodes) for this
• Perform symbolic evaluation
 • Keep track of whether variables are constant or not
• Replace constant-valued variable uses with their values, try to simplify expressions and control flow
x = 1;
y = x + 2;
if (y > x) then y = 5;
... y ...
Symbolic evaluation

- Idea: replace each value with a symbolic constant (specify which), maybe constant, definitely not constant
- Can organize these possible values in a lattice (will formalize this later)
Symbolic evaluation

• Evaluate expressions symbolically: eval(e, \(V_{in} \))

• If \(e \) evaluates to a constant, return that value. If any input is \(T \) (or \(\bot \)), return \(T \) (or \(\bot \))

• Why?

• Two special operations on lattice

 • meet(a, b) – highest value less than or equal to both \(a \) and \(b \)

 • join(a, b) – lowest value greater than or equal to both \(a \) and \(b \)

Join often written as \(a \sqcup b \)
Meet often written as \(a \sqcap b \)
Putting it together

- Keep track of the symbolic value of a variable at every program point (on every CFG edge)
- State vector
- What should our initial value be?
 - Starting state vector is all \top
 - Can’t make any assumptions about inputs – must assume not constant
 - Everything else starts as \perp, since we don’t know if the variable is constant or not at that point
Executing symbolically

• For each statement $t = e$
 evaluate e using V_{in}, update value for t and propagate state vector to next statement

• What about switches?
 • If e is true or false, propagate V_{in} to appropriate branch

• What if we can’t tell?
 • Propagate V_{in} to both branches, and symbolically execute both sides

• What do we do at merges?
Handling merges

• Have two different V_{in}s coming from two different paths

• Goal: want new value for V_{in} to be safe (shouldn’t generate wrong information), and we don’t know which path we actually took

• Consider a single variable. Several situations:
 • $V_1 = \bot, V_2 = * \rightarrow V_{out} = *$
 • $V_1 = \text{constant } x, V_2 = x \rightarrow V_{out} = x$
 • $V_1 = \text{constant } x, V_2 = \text{constant } y \rightarrow V_{out} = T$
 • $V_1 = T, V_2 = * \rightarrow V_{out} = T$

• Generalization:
 • $V_{out} = V_1 \cup V_2$
Result: worklist algorithm

- Associate state vector with each edge of CFG, initialize all values to \perp, worklist has just start edge

- While worklist not empty, do:

 Process the next edge from worklist
 Symbolically evaluate target node of edge using input state vector
 If target node is assignment ($x = e$), propagate $V_{in}[\text{eval}(e)/x]$ to output edge
 If target node is branch ($e?$)

 If eval(e) is true or false, propagate V_{in} to appropriate output edge

 Else, propagate V_{in} along both output edges
 If target node is merge, propagate $\text{join}(\text{all } V_{in})$ to output edge
 If any output edge state vector has changed, add it to worklist
Running example

start

x = 1

y = x + 2

y > x?

merge

... y ...

drop

end
Running example

1. x = 1
2. y = x + 2
3. y > x?
4. y = 5
5. ... y ...
6. end
What do we do about loops?

- Unless a loop never executes, symbolic execution looks like it will keep going around to the same nodes over and over again.
- Insight: if the input state vector(s) for a node don’t change, then its output doesn’t change.
- If input stops changing, then we are done!
- Claim: input will eventually stop changing. Why?
Loop example

First time through loop, $x = 1$
Subsequent times, $x = T$
Complexity of algorithm

- V = # of variables, E = # of edges
- Height of lattice = 2 \rightarrow each state vector can be updated at most 2 * V times.
- So each edge is processed at most 2 * V times, so we process at most 2 * E * V elements in the worklist.
- Cost to process a node: O(V)
- Overall, algorithm takes O(EV^2) time
Question

- Can we generalize this algorithm and use it for more analyses?
- First, let’s lay the theoretical foundation for dataflow analysis.
Lattice Theory
First, something interesting

• **Brouwer Fixpoint Theorem**
 - Every continuous function f from a closed disk into itself has at least one fixed point

• More formally:
 - Domain D: a convex, closed, **bounded** subspace in a plane (generalizes to higher dimensions)
 - Function $f : D \rightarrow D$
 - There exists some x such that $f(x) = x$
Intuition

- Consider the one-dimensional case: mapping a line segment onto itself
 - $x \in [0, 1]$
 - $f(x) \in [0, 1]$
 - There must exist some x for which $f(x) = x$
- Examples (in 2D)
 - A mall directory
 - Crumpling up a piece of graph paper
Back to dataflow

• Game plan:
 • Finite partially ordered set with least element: D
 • Function $f : D \to D$
 • Monotonic function $f : D \to D$
 • \exists fixpoint of f
 • \exists least fixpoint of f
 • Generalization to case when D has a greatest element, \top
 • \exists greatest fixpoint of f
 • Generalization to systems of equations
Partially ordered set (poset)

- Set D with a relation \sqsubseteq that is
 - Reflexive: $x \sqsubseteq x$
 - Anti-symmetric: $x \sqsubseteq y$ and $y \sqsubseteq x \Rightarrow y = x$
 - Transitive: $x \sqsubseteq y, y \sqsubseteq z \Rightarrow x \sqsubseteq z$

- Example: set of integers and \leq

- Graphical representation of poset
 - Graph in which nodes are elements of D and relation \sqsubseteq is indicated by arrows
 - Usually omit reflexive and transitive arrows for legibility
 - Not counting reflexive edges, graph is always a DAG (why?)
Another example

• Powerset of any set, ordered by \(\subseteq \) is a poset

• In the example, poset elements are \(\{\}, \{a\}, \{a, b\}, \{a, b, c\} \), etc.

• \(X \subseteq Y \) iff \(X \subseteq Y \)
Finite poset with least element

- Poset in which
 - Set is finite
 - There is a least element that is below all other elements in poset

- Examples
 - Set of integers ordered by \leq is *not* a finite poset with least element (no least element, not finite)
 - Set of natural numbers ordered by \leq has a least element (0), but not finite
 - Set of factors of 12, ordered by \leq has a least element as is finite
 - Powerset example from before is finite (how many elements?) with a least element ($\{\}$)
Domains

• “Finite poset with least element” is a mouthful, so we will abbreviate this to domain

• Later, we will add additional conditions to domains that are of interest to us in the context of dataflow analysis

• (Goal: what is a lattice?)
Functions on domains

- If D is a domain, we can define a function $f : D \to D$

 - Function maps each element of domain on to another element of the domain

- Example: for $D =$ powerset of \{a, b, c\}

 - $f(x) = x \cup \{a\}$
 - $g(x) = x - \{a\}$
 - $h(x) = \{a\} - x$
Monotonic functions

• A function $f : D \to D$ on a domain D is *monotonic* if
 • $x \sqsubseteq y \Rightarrow f(x) \sqsubseteq f(y)$

• Note: this is not the same as $x \sqsubseteq f(x)$

• This means that x is *extensive*

• Intuition: think of f as an electrical circuit mapping input to output
 • If f is monotonic, raising the input voltage raises the output voltage (or keeps it the same)
 • If f is extensive, the output voltage is always the same or more than the input voltage
Examples

• Domain D is the powerset of \{a, b, c\}

• Monotonic functions:
 • \(f(x) = \emptyset\) (why?)
 • \(f(x) = x \cup \{a\}\)
 • \(f(x) = x - \{a\}\)

• Not monotonic
 • \(f(x) = \{a\} - x\) (why?)

• Extensivity
 • \(f(x) = x \cup \{a\}\) is monotonic and extensive
 • \(f(x) = x - \{a\}\) is monotonic but not extensive
 • \(f(x) = \{a\} - x\) is neither

• What is a function that is extensive, but not monotonic?
Fixpoints

• Suppose $f : D \rightarrow D$.
 • A value x is a fixpoint of f if $f(x) = x$
 • f maps x to itself

• Examples: D is a powerset of $\{a, b, c\}$
 • Identity function: $f(x) = x$
 • Every element is a fixpoint
 • $f(x) = x \cup \{a\}$
 • Every set that contains a is a fixpoint
 • $f(x) = \{a\} - x$
 • No fixpoints
Fixpoint theorem

• One form of *Knaster-Tarski Theorem*:

If D is a domain and $f : D \rightarrow D$ is monotonic, then f has at least one fixpoint

• More interesting consequence:

If \bot is the least element of D, then f has a *least fixpoint*, and that fixpoint is the largest element in the chain

$\bot, f(\bot), f(f(\bot)), f(f(f(\bot))) ... f^n(\bot)$

• Least fixpoint: a fixpoint of f, x such that, if y is a fixpoint of f, then $x \sqsubseteq y$
Examples

• For domain of powersets, \{ \} is the least element

• For identity function, \(f^n(\{ \}) \) is the chain

\{ \}, \{ \}, \{ \}, ... so least fixpoint is \{ \}, which is correct

• For \(f(x) = x \cup \{a\} \), we get the chain

\{ \}, \{a\}, \{a\}, ... so least fixpoint is \{a\}, which is correct

• For \(f(x) = \{a\} - x \), function is not monotonic, so not guaranteed to have a fixpoint!

• Important observation: as soon as the chain repeats, we have found the fixpoint (why?)
Proof of fixpoint theorem

• First, prove that largest element of chain $f^n(\bot)$ is a fixpoint

• Second, prove that $f^n(\bot)$ is the least fixpoint
Solving equations

- If D is a domain and $f : D \rightarrow D$ is a monotone function on that domain, then the equation $f(x) = x$ has a least fixpoint, given by the largest element in the sequence

 $\bot, f(\bot), f(f(\bot)), f(f(f(\bot))) \ldots$

- Proof follows directly from fixpoint theorem
Adding a top

• Now let us consider domains with an element \top, such that for every point x in the domain, $x \sqsubseteq \top$

• New theorem: if D is a domain with a greatest element \top and $f: D \to D$ is monotonic, then the equation $x = f(x)$ has a greatest solution, and that solution is the smallest element in the sequence

 $\top, f(\top), f(f(\top)), ...$

• Proof?
Multi-argument functions

- If D is a domain, a function $f : D \times D \rightarrow D$ is monotonic if it is monotonic in each argument when the other is held constant.

- Intuition:
 - Electrical circuit has two inputs
 - If you raise either input while holding the other constant, the output either goes up or stays the same.
Fixpoints of multi-arg functions

- Can generalize fixpoint theorem in a straightforward way
- If D is a domain and $f, g : D \times D \to D$ are monotonic, the following system of equations has a least fixpoint solution, calculated in the obvious way

 $$x = f(x, y) \text{ and } y = g(x, y)$$

- Can generalize this to more than two variables and domains with greatest elements easily
A bounded lattice is a partially ordered set with a \(\perp \) and \(\top \), with two special functions for any pair of points \(x \) and \(y \) in the lattice:

- A *join*: \(x \sqcup y \) is the least element that is greater than \(x \) and \(y \) (also called the *least upper bound*).
- A *meet*: \(x \sqcap y \) is the greatest element that is less than \(x \) and \(y \) (also called the *greatest lower bound*).
- Are \(\sqcup \) and \(\sqcap \) monotonic?
More about lattices

- Bounded lattices with a finite number of elements are a special case of domains with \top (why are they not the same?)

- Systems of monotonic functions (including \sqcup and \sqcap) will have fixpoints

- But some lattices are infinite! (example: the lattice for constant propagation)

- It turns out that you can show a monotonic function will have a least fixpoint for any lattice (or domain) of finite height

- Finite height: any totally ordered subset of domain (this is called a chain) must be finite

- Why does this work?
Solving system of equations

- Consider

x = f(x, y, z)

 y = g(x, y, z)

 z = h(x, y, z)

- Obvious iterative solution: evaluate every function at every step:

 \[\perp \ f(\perp, \perp, \perp) \quad \ldots\]

 \[\perp \ g(\perp, \perp, \perp) \quad \ldots\]

 \[\perp \ h(\perp, \perp, \perp) \quad \ldots\]
Worklist algorithm

- Obvious point: only necessary to re-evaluate functions whose inputs have changed

- Worklist algorithm
 - Initialize worklist with all equations
 - Initialize solution vector S to all \bot
 - While worklist not empty
 - Get equation from worklist
 - Re-evaluate equation based on S, update entry corresponding to lhs in S
 - Put all equations which use this lhs on their rhs in the worklist
 - Claim: the worklist algorithm for constant propagation is an instance of this approach
Mapping worklist algorithm

- Careful: the “variables” in constant propagation are not the individual variable values in a state vector. Each variable (from a fixpoint perspective) is an entire state vector – there are as many variables as there are edges in the CFG.

- Functions:
 - Program statements: \(\text{eval}(e, V_{in}) \)
 - These are called *transfer functions*
 - Need to make sure this is monotonic
 - Branches
 - Propagates input state vector to output – trivially monotonic
 - Merges
 - Use join or meet to combine multiple input variables – monotonic by definition
Constant propagation

• Step 1: choose lattice
 • Use constant lattice (infinite, but finite height)
• Step 2: choose direction of dataflow
 • Run forward through program
• Step 3: create monotonic transfer functions
 • If input goes from \(\bot \) to constant, output can only go up. If input goes from constant to \(\top \), output goes to \(\top \)
• Step 4: choose *confluence operator*
 • What do do at merges? For constant propagation, use join