Control flow graphs and loop optimizations
Agenda

- Building control flow graphs
- Low level loop optimizations
 - Code motion
 - Strength reduction
 - Unrolling
- High level loop optimizations
 - Loop fusion
 - Loop interchange
 - Loop tiling
Moving beyond basic blocks

- Up until now, we have focused on single basic blocks
- What do we do if we want to consider larger units of computation
 - Whole procedures?
 - Whole program?
- Idea: capture control flow of a program
 - How control transfers between basic blocks due to:
 - Conditionals
 - Loops
 Representation

• Use standard three-address code
• Jump targets are labeled
• Also label beginning/end of functions
• Want to keep track of *targets of jump statements*
 • Any statement whose execution may immediately follow execution of jump statement
 • *Explicit* targets: targets mentioned in jump statement
 • *Implicit* targets: statements that follow conditional jump statements
 • The statement that gets executed if the branch is not taken
Running example

A = 4

t1 = A \times B

repeat {
 t2 = t1/C
 if (t2 \geq W) {
 M = t1 \times k
 t3 = M + I
 }
 H = I
 M = t3 - H
} until (T3 \geq 0)
Running example

1 A = 4
2 t1 = A * B
3 L1: t2 = t1 / C
4 if t2 < W goto L2
5 M = t1 * k
6 t3 = M + I
7 L2: H = I
8 M = t3 - H
9 if t3 ≥ 0 goto L3
10 goto L1
11 L3: halt
Control flow graphs

- Divides statements into *basic blocks*

- Basic block: a maximal sequence of statements $l_0, l_1, l_2, ..., l_n$ such that if l_j and l_{j+1} are two adjacent statements in this sequence, then

 - The execution of l_j is always immediately followed by the execution of l_{j+1}

 - The execution of l_{j+1} is always immediately preceded by the execution of l_j

- Edges between basic blocks represent potential flow of control
A = 4
\(t1 = A \times B \)

\(L1: \ t2 = t1/c \)
if \(t2 < W \) goto L2

\(M = t1 \times k \)
\(t3 = M + I \)

\(L2: \ H = I \)
\(M = t3 - H \)
if \(t3 \geq 0 \) goto L3

\(L3: \) halt

How do we build this automatically?
Constructing a CFG

• To construct a CFG where each node is a basic block
 • Identify *leaders*: first statement of a basic block
 • In program order, construct a block by appending subsequent statements up to, but not including, the next leader

• Identifying leaders
 • First statement in the program
 • Explicit target of any conditional or unconditional branch
 • Implicit target of any branch
Partitioning algorithm

- **Input:** set of statements, \(\text{stat}(i) = i^{th} \) statement in input
- **Output:** set of leaders, set of basic blocks where \(\text{block}(x) \) is the set of statements in the block with leader \(x \)

- **Algorithm**

 \[\text{leaders} = \{1\} \quad //\text{Leaders always includes first statement}\]

 \[\text{for } i = 1 \text{ to } |n| \quad //|n| = \text{number of statements}\]

 \[\text{if stat}(i) \text{ is a branch, then} \]

 \[\text{leaders} = \text{leaders} \cup \text{all potential targets} \]

 \[\text{end for}\]

 \[\text{worklist} = \text{leaders}\]

 \[\text{while worklist not empty do}\]

 \[x = \text{remove earliest statement in worklist}\]

 \[\text{block}(x) = \{x\}\]

 \[\text{for } (i = x + 1; i \leq |n| \text{ and } i \notin \text{leaders} ; i++)\]

 \[\text{block}(x) = \text{block}(x) \cup \{i\}\]

 \[\text{end for}\]

 \[\text{end while}\]
Running example

1 A = 4
2 t1 = A * B
3 L1: t2 = t1 / C
4 if t2 < W goto L2
5 M = t1 * k
6 t3 = M + I
7 L2: H = I
8 M = t3 - H
9 if t3 ≥ 0 goto L3
10 goto L1
11 L3: halt

Leaders =
Basic blocks =
Running example

1 A = 4
2 t1 = A * B
3 \textbf{L1:} t2 = t1 / C
4 if t2 < W goto L2
5 M = t1 * k
6 t3 = M + I
7 \textbf{L2:} H = I
8 M = t3 - H
9 if t3 ≥ 0 goto L3
10 goto L1
11 \textbf{L3:} halt

Leaders = \{1, 3, 5, 7, 10, 11\}
Basic blocks = \{ \{1, 2\}, \{3, 4\}, \{5, 6\}, \{7, 8, 9\}, \{10\}, \{11\} \}
Putting edges in CFG

• There is a directed edge from \(B_1 \) to \(B_2 \) if

 • There is a branch from the last statement of \(B_1 \) to the first statement (leader) of \(B_2 \)

 • \(B_2 \) immediately follows \(B_1 \) in program order and \(B_1 \) does not end with an unconditional branch

• Input: \textit{block}, a sequence of basic blocks

• Output: The CFG

\[
\text{for } i = 1 \text{ to } |\text{block}| \\
\text{ } x = \text{last statement of block}(i) \\
\text{if stat}(x) \text{ is a branch, then} \\
\text{ } \text{for each explicit target } y \text{ of stat}(x) \\
\text{ } \text{create edge from block } i \text{ to block } y \\
\text{end for} \\
\text{if stat}(x) \text{ is not unconditional then} \\
\text{ } \text{create edge from block } i \text{ to block } i+1 \\
\text{end for}
\]
Result

A = 4
\[t1 = A \times B \]

\[L1: \ t2 = \frac{t1}{c} \]
\[\text{if } t2 < W \text{ goto } L2 \]

\[M = t1 \times k \]
\[t3 = M + I \]

\[L2: \ H = I \]
\[M = t3 - H \]
\[\text{if } t3 \geq 0 \text{ goto } L3 \]

\[L3: \text{ halt} \]
Discussion

- Some times we will also consider the statement-level CFG, where each node is a statement rather than a basic block.
- Either kind of graph is referred to as a CFG.
- In statement-level CFG, we often use a node to explicitly represent merging of control.
- Control merges when two different CFG nodes point to the same node.
- Note: if input language is structured, front-end can generate basic block directly.
- “GOTO considered harmful”
Statement level CFG

A = 4

\[t1 = A \times B \]

L1: \[t2 = \frac{t1}{c} \]

if \(t2 < W \) goto L2

M = t1 * k

t3 = M + I

L2: \(H = I \)

M = t3 - H

if \(t3 \geq 0 \) goto L3

L3: halt

goto L1
Loop optimization

- Low level optimization
 - Moving code around in a single loop
 - Examples: loop invariant code motion, strength reduction, loop unrolling

- High level optimization
 - Restructuring loops, often affects multiple loops
 - Examples: loop fusion, loop interchange, loop tiling
Low level loop optimizations

• Affect a single loop
• Usually performed at three-address code stage or later in compiler
• First problem: identifying loops
 • Low level representation doesn’t have loop statements!
Identifying loops

• First, we must identify *dominators*

 • Node *a* dominates node *b* if every possible execution path that gets to *b* *must* pass through *a*

 • Many different algorithms to calculate dominators – we will not cover how this is calculated

 • A *back edge* is an edge from *b* to *a* when *a* dominates *b*

 • The target of a back edge is a *loop header*
Natural loops

- Will focus on *natural loops* – loops that arise in structured programs
- For a node \(n \) to be in a loop with header \(h \)
 - \(n \) must be dominated by \(h \)
 - There must be a path in the CFG from \(n \) to \(h \) through a back-edge to \(h \)
- What are the back edges in the example to the right? The loop headers? The natural loops?
Loop invariant code motion

• Idea: some expressions evaluated in a loop never change; they are *loop invariant*

• Can move loop invariant expressions outside the loop, store result in temporary and just use the temporary in each iteration

• Why is this useful?
Identifying loop invariant code

- To determine if a statement
 \(s: t = a \text{ op } b \)
 is loop invariant, find all definitions of \(a \) and \(b \) that reach \(s \)
- \(s \) is loop invariant if both \(a \) and \(b \) satisfy one of the following
 - it is constant
 - all definitions that reach it are from outside the loop
 - only one definition reaches it and that definition is also loop invariant
Moving loop invariant code

- Just because code is loop invariant doesn’t mean we can move it!

- We can move a loop invariant statement \(t = a \text{ op } b \) if
 - The statement dominates all loop exits where \(t \) is live
 - There is only one definition of \(t \) in the loop
 - \(T \) is not live before the loop
 - Move instruction to a preheader, a new block put right before loop header

```plaintext
for (...) 
  if (*) 
    a = 5 
  else 
    a = 6
for (...) 
  a = b + c 
  c = a;
```
Strength reduction

- Like strength reduction peephole optimization
- Peephole: replace expensive instruction like a * 2 with a << 1
- Replace expensive instruction, multiply, with a cheap one, addition
- Applies to uses of an induction variable
- Opportunity: array indexing

```c
for (i = 0; i < 100; i++)
    A[i] = 0;
```

```c
i = 0;
L2: if (i >= 100) goto L1
    j = 4 * i + &A
    *j = 0;
    i = i + 1;
    goto L2
L1:
```
Strength reduction

- Like strength reduction peephole optimization
- Peephole: replace expensive instruction like $a \times 2$ with $a \ll 1$
- Replace expensive instruction, multiply, with a cheap one, addition
- Applies to uses of an induction variable
- Opportunity: array indexing

```plaintext
for (i = 0; i < 100; i++)
    A[i] = 0;
```

```plaintext
i = 0; k = &A;
L2: if (i >= 100) goto L1
    j = k;
    *j = 0;
    i = i + 1; k = k + 4;
goto L2
L1:
```
Induction variables

- A **basic induction variable** is a variable \(j \)
- whose only definition within the loop is an assignment of the form \(j = j \pm c \), where \(c \) is loop invariant
- Intuition: the variable which determines number of iterations is usually an induction variable

- A **mutual induction variable** \(i \) may be
 - defined once within the loop, and its value is a linear function of some other induction variable \(j \) such that
 \[i = c_1 \cdot j \pm c_2 \text{ or } i = j/c_1 \pm c_2 \]
 where \(c_1, c_2 \) are loop invariant

- A **family** of induction variables include a basic induction variable and any related mutual induction variables
Strength reduction algorithm

- Let i be an induction variable in the family of the basic induction variable j, such that $i = c_1 \cdot j + c_2$
- Create a new variable i'
- Initialize in preheader

 $i' = c_1 \cdot j + c_2$
- Track value of j. After $j = j + c_3$, perform

 $i' = i' + (c_1 \cdot c_3)$
- Replace definition of i with

 $i = i'$
- Key: c_1, c_2, c_3 are all loop invariant (or constant), so computations like $(c_1 \cdot c_3)$ can be moved outside loop
Linear test replacement

- After strength reduction, the loop test may be the only use of the basic induction variable.
- Can now eliminate induction variable altogether.
- Algorithm
 - If only use of an induction variable is the loop test and its increment, and if the test is always computed.
 - Can replace the test with an equivalent one using one of the mutual induction variables.

```
i = 2
for (; i < k; i++)
  j = 50*i
  ... = j
```

```
i = 2; j' = 50 * i
for (; i < k; i++, j' += 50)
  ... = j'
```

Strength reduction

```
i = 2; j' = 50 * i
for (; j' < 50*k; j' += 50)
  ... = j'
```

Linear test replacement
Loop unrolling

- Modifying induction variable in each iteration can be expensive
- Can instead unroll loops and perform multiple iterations for each increment of the induction variable
- What are the advantages and disadvantages?

```c
for (i = 0; i < N; i++)
    A[i] = ...  
for (i = 0; i < N; i += 4)
    A[i] = ...  
    A[i+1] = ...  
    A[i+2] = ...  
    A[i+3] = ...
```

Unroll by factor of 4
High level loop optimizations

• Many useful compiler optimizations require restructuring loops or sets of loops
• Combining two loops together (loop fusion)
• Switching the order of a nested loop (loop interchange)
• Completely changing the traversal order of a loop (loop tiling)
• These sorts of high level loop optimizations usually take place at the AST level (where loop structure is obvious)
Cache behavior

- Most loop transformations target cache performance
- Attempt to increase *spatial* or *temporal* locality
- Locality can be exploited when there is *reuse* of data (for temporal locality) or recent access of nearby data (for spatial locality)
- Loops are a good opportunity for this: many loops iterate through matrices or arrays
- Consider matrix-vector multiply example
- Multiple traversals of vector: opportunity for spatial and temporal locality
- Regular access to array: opportunity for spatial locality

\[
y = Ax
\]

\[
\text{for } (i = 0; i < N; i++)
\]
\[
\text{for } (j = 0; j < N; j++)
\]
\[
y[i] += A[i][j] * x[j]
\]
Loop fusion

- Combine two loops together into a single loop
- Why is this useful?
- Is this always legal?

```plaintext
do l = 1, n
  c[i] = a[i]
end do
do l = 1, n
  b[i] = a[i]
end do
```

```plaintext
do l = 1, n
  c[i] = a[i]
  b[i] = a[i]
end do
```
Loop interchange

- Change the order of a nested loop
- This is not always legal – it changes the order that elements are accessed!
- Why is this useful?
 - Consider matrix-matrix multiply when A is stored in column-major order (i.e., each column is stored in contiguous memory)

```plaintext
for (i = 0; i < N; i++)
  for (j = 0; j < N; j++)
    y[i] += A[i][j] * x[j]
```

y A

i j

x
Loop interchange

- Change the order of a nested loop
- This is not always legal – it changes the order that elements are accessed!
- Why is this useful?
 - Consider matrix-matrix multiply when A is stored in column-major order (i.e., each column is stored in contiguous memory)

\[
\begin{align*}
\text{for } (j = 0; j < N; j++) \\
\text{for } (i = 0; i < N; i++) \\
y[i] &+ A[i][j] \times x[j]
\end{align*}
\]
Loop tiling

- Also called “loop blocking”
- One of the more complex loop transformations
- Goal: break loop up into smaller pieces to get spatial and temporal locality
- Create new inner loops so that data accessed in inner loops fit in cache
- Also changes iteration order, so may not be legal

```c
for (i = 0; i < N; i++)
    for (j = 0; j < N; j++)
        y[i] += A[i][j] * x[j]

for (ii = 0; ii < N; ii += B)
    for (jj = 0; jj < N; jj += B)
        for (i = ii; i < ii+B; i++)
            for (j = jj; j < jj+B; j++)
                y[i] += A[i][j] * x[j]
```
Loop tiling

- Also called “loop blocking”
- One of the more complex loop transformations
- Goal: break loop up into smaller pieces to get spatial and temporal locality
- Create new inner loops so that data accessed in inner loops fit in cache
- Also changes iteration order, so may not be legal

```
for (i = 0; i < N; i++)
  for (j = 0; j < N; j++)
    y[i] += A[i][j] * x[j]
```

```
for (ii = 0; ii < N; ii += B)
  for (jj = 0; jj < N; jj += B)
    for (i = ii; i < ii+B; i++)
      for (j = jj; j < jj+B; j++)
        y[i] += A[i][j] * x[j]
```

Monday, November 8, 2010
In a real (Itanium) compiler

GFLOPS relative to -O2; bigger is better

92% of Peak Performance
Loop transformations

• Loop transformations can have dramatic effects on performance
• Doing this legally and automatically is very difficult!
• Researchers have developed techniques to determine legality of loop transformations and automatically transform the loop
 • Techniques like unimodular transform framework and polyhedral framework